File size: 11,450 Bytes
b5bcf5a
ce64ebd
b5bcf5a
76e1435
 
 
 
78ef809
a1ac37a
76e1435
b5bcf5a
 
 
 
6a31985
b5bcf5a
ceb2ea0
6a31985
 
c0fc237
6a31985
 
d7dcf58
 
c0fc237
a1ac37a
 
97a997a
f3a1509
 
 
 
 
 
97a997a
f3a1509
 
 
 
 
 
45a53c4
76e1435
7641a99
 
397b627
 
707a100
 
d7dcf58
397b627
 
fd3c6d5
 
 
 
7641a99
c0fc237
707a100
ceb2ea0
707a100
 
993e246
707a100
 
 
 
0c4170f
707a100
 
0c4170f
7641a99
4322777
 
a1ac37a
4322777
 
a1ac37a
4322777
d7dcf58
a1ac37a
4322777
d7dcf58
4322777
 
 
 
 
 
 
7f350a5
7641a99
7f350a5
7641a99
7f350a5
 
 
 
 
7641a99
a1ac37a
4322777
 
 
 
 
 
7641a99
4322777
a1ac37a
4322777
 
 
 
 
 
 
 
 
 
 
 
7f350a5
 
 
 
 
 
 
 
 
 
 
 
 
4322777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ac37a
4322777
 
 
a1ac37a
4322777
 
 
 
 
 
 
 
a1ac37a
4322777
 
 
 
 
 
 
 
 
 
 
 
7f350a5
 
 
 
 
 
 
 
 
 
 
 
4322777
7641a99
4322777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397b627
b87bea7
c0fc237
 
 
 
1a184e0
 
 
c0fc237
 
707a100
 
 
 
 
 
 
 
 
993e246
707a100
 
993e246
707a100
 
 
 
 
993e246
707a100
d7dcf58
 
 
7d5f6e0
1a184e0
d7dcf58
c0fc237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397b627
707a100
 
 
1a184e0
707a100
 
 
1a184e0
707a100
 
397b627
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
torch._dynamo.config.disable = True
from collections.abc import Iterator
from transformers import (
    Gemma3ForConditionalGeneration,
    TextIteratorStreamer,
    Gemma3Processor,
    Gemma3nForConditionalGeneration,
    Gemma3nProcessor
)
import spaces
from threading import Thread
import gradio as gr
import os
from dotenv import load_dotenv, find_dotenv
from loguru import logger
from utils import *

dotenv_path = find_dotenv()

load_dotenv(dotenv_path)

model_12_id = os.getenv("MODEL_12_ID", "google/gemma-3-12b-it")
model_3n_id = os.getenv("MODEL_3N_ID", "google/gemma-3n-E4B-it")

input_processor_12 = Gemma3Processor.from_pretrained(model_12_id)
input_processor_3n = Gemma3nProcessor.from_pretrained(model_3n_id)

model_12 = Gemma3ForConditionalGeneration.from_pretrained(
    model_12_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="eager",
)

model_3n = Gemma3nForConditionalGeneration.from_pretrained(
    model_3n_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="eager",
)


@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt_preset: str,
    custom_system_prompt: str,
    model_choice: str,
    max_new_tokens: int,
    max_images: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repetition_penalty: float,
) -> Iterator[str]:

    # Define preset system prompts
    preset_prompts = get_preset_prompts()
    
    # Determine which system prompt to use
    if system_prompt_preset == "Custom Prompt":
        system_prompt = custom_system_prompt
    else:
        system_prompt = preset_prompts.get(system_prompt_preset, custom_system_prompt)

    logger.debug(
        f"\n message: {message} \n history: {history} \n system_prompt_preset: {system_prompt_preset} \n "
        f"system_prompt: {system_prompt} \n model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
    )

    def try_fallback_model(original_model_choice: str):
        fallback_model = model_3n if original_model_choice == "Gemma 3 12B" else model_12
        fallback_processor = input_processor_3n if original_model_choice == "Gemma 3 12B" else input_processor_12
        fallback_name = "Gemma 3n E4B" if original_model_choice == "Gemma 3 12B" else "Gemma 3 12B"
        logger.info(f"Attempting fallback to {fallback_name} model")
        return fallback_model, fallback_processor, fallback_name

    selected_model = model_12 if model_choice == "Gemma 3 12B" else model_3n
    selected_processor = input_processor_12 if model_choice == "Gemma 3 12B" else input_processor_3n
    current_model_name = model_choice

    try:
        messages = []
        if system_prompt:
            messages.append(
                {"role": "system", "content": [{"type": "text", "text": system_prompt}]}
            )
        messages.extend(process_history(history))
        user_content = process_user_input(message, max_images)
        messages.append(
            {"role": "user", "content": user_content}
        )
        
        # Validate messages structure before processing
        logger.debug(f"Final messages structure: {len(messages)} messages")
        for i, msg in enumerate(messages):
            logger.debug(f"Message {i}: role={msg.get('role', 'MISSING')}, content_type={type(msg.get('content', 'MISSING'))}")

        inputs = selected_processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
        ).to(device=selected_model.device, dtype=torch.bfloat16)

        streamer = TextIteratorStreamer(
            selected_processor, skip_prompt=True, skip_special_tokens=True, timeout=60.0
        )
        generate_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            do_sample=True,
        )
        
        # Wrapper function to catch thread exceptions
        def safe_generate():
            try:
                selected_model.generate(**generate_kwargs)
            except Exception as thread_e:
                logger.error(f"Exception in generation thread: {thread_e}")
                logger.error(f"Thread exception type: {type(thread_e)}")
                # Store the exception so we can handle it in the main thread
                import traceback
                logger.error(f"Thread traceback: {traceback.format_exc()}")
                raise
        
        t = Thread(target=safe_generate)
        t.start()

        output = ""
        generation_failed = False
        
        try:
            for delta in streamer:
                if delta is None:
                    continue
                output += delta
                yield output
                
        except Exception as stream_error:
            logger.error(f"Streaming failed with {current_model_name}: {stream_error}")
            generation_failed = True
            
        # Wait for thread to complete
        t.join(timeout=120)  # 2 minute timeout
        
        if t.is_alive() or generation_failed or not output.strip():
            raise Exception(f"Generation failed or timed out with {current_model_name}")
            
    except Exception as primary_error:
        logger.error(f"Primary model ({current_model_name}) failed: {primary_error}")
        
        # Try fallback model
        try:
            selected_model, fallback_processor, fallback_name = try_fallback_model(model_choice)
            logger.info(f"Switching to fallback model: {fallback_name}")
            
            # Rebuild inputs for fallback model
            inputs = fallback_processor.apply_chat_template(
                messages,
                add_generation_prompt=True,
                tokenize=True,
                return_dict=True,
                return_tensors="pt",
            ).to(device=selected_model.device, dtype=torch.bfloat16)

            streamer = TextIteratorStreamer(
                fallback_processor, skip_prompt=True, skip_special_tokens=True, timeout=60.0
            )
            generate_kwargs = dict(
                inputs,
                streamer=streamer,
                max_new_tokens=max_new_tokens,
                temperature=temperature,
                top_p=top_p,
                top_k=top_k,
                repetition_penalty=repetition_penalty,
                do_sample=True,
            )
            
            # Wrapper function to catch thread exceptions in fallback
            def safe_fallback_generate():
                try:
                    selected_model.generate(**generate_kwargs)
                except Exception as thread_e:
                    logger.error(f"Exception in fallback generation thread: {thread_e}")
                    logger.error(f"Fallback thread exception type: {type(thread_e)}")
                    import traceback
                    logger.error(f"Fallback thread traceback: {traceback.format_exc()}")
                    raise
            
            t = Thread(target=safe_fallback_generate)
            t.start()

            output = f"⚠️ Switched to {fallback_name} due to {current_model_name} failure.\n\n"
            yield output
            
            try:
                for delta in streamer:
                    if delta is None:
                        continue
                    output += delta
                    yield output
            except Exception as fallback_stream_error:
                logger.error(f"Fallback streaming failed: {fallback_stream_error}")
                raise fallback_stream_error
                
            # Wait for fallback thread
            t.join(timeout=120)
            
            if t.is_alive() or not output.strip():
                raise Exception(f"Fallback model {fallback_name} also failed")
                
        except Exception as fallback_error:
            logger.error(f"Fallback model also failed: {fallback_error}")
            
            # Final fallback - return error message
            error_message = (
                "❌ **Generation Failed**\n\n"
                f"Both {model_choice} and fallback model encountered errors. "
                "This could be due to:\n"
                "- High server load\n"
                "- Memory constraints\n"
                "- Input complexity\n\n"
                "**Suggestions:**\n"
                "- Try reducing max tokens or image count\n"
                "- Simplify your prompt\n"
                "- Try again in a few moments\n\n"
                f"*Error details: {str(primary_error)[:200]}...*"
            )
            yield error_message


demo = gr.ChatInterface(
    fn=run,
    type="messages",
    chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
    textbox=gr.MultimodalTextbox(
        file_types=[".mp4", ".jpg", ".png", ".pdf"], file_count="multiple", autofocus=True
    ),
    multimodal=True,
    additional_inputs=[
        gr.Dropdown(
            label="System Prompt Preset",
            choices=[
                "General Assistant",
                "Document Analyzer", 
                "Visual Content Expert",
                "Educational Tutor",
                "Technical Reviewer",
                "Creative Storyteller",
                "Custom Prompt"
            ],
            value="General Assistant",
            info="System prompts define the AI's role and behavior. Choose a preset that matches your task, or select 'Custom Prompt' to write your own specialized instructions."
        ),
        gr.Textbox(
            label="Custom System Prompt", 
            value="You are a helpful AI assistant capable of analyzing images, videos, and PDF documents. Provide clear, accurate, and helpful responses to user queries.",
            lines=3,
            info="Edit this field when 'Custom Prompt' is selected above, or modify any preset"
        ),
        gr.Dropdown(
            label="Model",
            choices=["Gemma 3 12B", "Gemma 3n E4B"],
            value="Gemma 3 12B",
            info="Gemma 3 12B: More powerful and detailed responses, but slower processing. Gemma 3n E4B: Faster processing with efficient performance for most tasks."
        ),
        gr.Slider(
            label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
        ),
        gr.Slider(label="Max Images", minimum=1, maximum=4, step=1, value=2),
        gr.Slider(
            label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7
        ),
        gr.Slider(
            label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.9
        ),
        gr.Slider(
            label="Top K", minimum=1, maximum=100, step=1, value=50
        ),
        gr.Slider(
            label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1
        )
    ],
    stop_btn=False,
)

# Connect the dropdown to update the textbox
with demo:
    preset_dropdown = demo.additional_inputs[0]
    custom_textbox = demo.additional_inputs[1]
    preset_dropdown.change(
        fn=update_custom_prompt,
        inputs=[preset_dropdown],
        outputs=[custom_textbox]
    )

if __name__ == "__main__":
    demo.launch()