File size: 7,213 Bytes
b5bcf5a
ce64ebd
b5bcf5a
 
76e1435
 
 
 
78ef809
76e1435
b5bcf5a
76e1435
b5bcf5a
 
 
6a31985
b5bcf5a
 
6a31985
 
 
c0fc237
6a31985
 
d7dcf58
 
c0fc237
686226c
c0fc237
686226c
 
78ef809
 
 
 
 
 
 
c0fc237
 
 
 
45a53c4
76e1435
67d411a
eab0adb
45a53c4
 
 
76e1435
45a53c4
 
 
67d411a
76e1435
 
45a53c4
76e1435
45a53c4
 
 
 
 
 
 
 
76e1435
 
45a53c4
76e1435
 
e4b23f9
76e1435
 
 
 
 
 
 
 
 
e4b23f9
 
 
ea5eb99
 
e4b23f9
ea5eb99
 
 
 
bc0a046
ea5eb99
bc0a046
 
 
 
 
 
 
e4b23f9
 
 
 
7641a99
e4b23f9
 
 
7641a99
 
 
e4b23f9
 
 
 
 
 
 
 
 
c89883c
 
 
 
 
 
 
 
e4b23f9
7641a99
 
e4b23f9
 
7641a99
 
 
 
397b627
 
 
d7dcf58
397b627
 
fd3c6d5
 
 
 
7641a99
c0fc237
0c4170f
c0fc237
d7dcf58
0c4170f
7641a99
d7dcf58
 
7641a99
 
 
 
 
 
397b627
 
 
7641a99
c0fc237
7641a99
 
 
 
 
d7dcf58
7641a99
 
d54c706
7641a99
 
 
 
 
fd3c6d5
 
 
 
 
7641a99
d7dcf58
7641a99
 
 
 
 
 
397b627
b87bea7
c0fc237
 
 
 
 
 
 
 
 
 
d7dcf58
 
 
 
 
c0fc237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397b627
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
torch._dynamo.config.disable = True
from huggingface_hub import login
from collections.abc import Iterator
from transformers import (
    Gemma3ForConditionalGeneration,
    TextIteratorStreamer,
    Gemma3Processor,
    Gemma3nForConditionalGeneration,
)
import spaces
import tempfile
from threading import Thread
import gradio as gr
import os
from dotenv import load_dotenv, find_dotenv
import cv2
from loguru import logger
from PIL import Image

dotenv_path = find_dotenv()

load_dotenv(dotenv_path)

model_12_id = os.getenv("MODEL_12_ID", "google/gemma-3-12b-it")
model_3n_id = os.getenv("MODEL_3N_ID", "google/gemma-3n-E4B-it")

input_processor = Gemma3Processor.from_pretrained(model_12_id)

model_12 = Gemma3ForConditionalGeneration.from_pretrained(
    model_12_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="eager",
)

model_3n = Gemma3nForConditionalGeneration.from_pretrained(
    model_3n_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="eager",
)


def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]:
    frames: list[tuple[Image.Image, float]] = []
    capture = cv2.VideoCapture(video_path)
    if not capture.isOpened():
        raise ValueError(f"Could not open video file: {video_path}")

    fps = capture.get(cv2.CAP_PROP_FPS)
    total_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))

    frame_interval = max(total_frames // max_images, 1)
    max_position = min(total_frames, max_images * frame_interval)
    i = 0

    while i < max_position and len(frames) < max_images:
        capture.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = capture.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))

        i += frame_interval

    capture.release()
    return frames


def process_video(video_path: str, max_images: int) -> list[dict]:
    result_content = []
    frames = get_frames(video_path, max_images)
    for frame in frames:
        image, timestamp = frame
        with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
            image.save(temp_file.name)
            result_content.append({"type": "text", "text": f"Frame {timestamp}:"})
            result_content.append({"type": "image", "url": temp_file.name})
    logger.debug(
        f"Processed {len(frames)} frames from video {video_path} with frames {result_content}"
    )
    return result_content


def process_user_input(message: dict, max_images: int) -> list[dict]:
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}]

    result_content = [{"type": "text", "text": message["text"]}]

    for file_path in message["files"]:
        if file_path.endswith((".mp4", ".mov")):
            result_content = [*result_content, *process_video(file_path, max_images)]
        else:
            result_content = [*result_content, {"type": "image", "url": file_path}]

    return result_content


def process_history(history: list[dict]) -> list[dict]:
    messages = []
    content_buffer = []

    for item in history:
        if item["role"] == "assistant":
            if content_buffer:
                messages.append({"role": "user", "content": content_buffer})
                content_buffer = []

            messages.append(
                {
                    "role": "assistant",
                    "content": [{"type": "text", "text": item["content"]}],
                }
            )
        else:
            content = item["content"]
            if isinstance(content, str):
                content_buffer.append({"type": "text", "text": content})
            elif isinstance(content, tuple) and len(content) > 0:
                file_path = content[0]
                if file_path.endswith((".mp4", ".mov")):
                    content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
                else:
                    content_buffer.append({"type": "image", "url": file_path})

    if content_buffer:
        messages.append({"role": "user", "content": content_buffer})

    return messages


@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt: str,
    model_choice: str,
    max_new_tokens: int,
    max_images: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repetition_penalty: float,
) -> Iterator[str]:

    logger.debug(
        f"\n message: {message} \n history: {history} \n system_prompt: {system_prompt} \n "
        f"model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
    )

    selected_model = model_12 if model_choice == "Gemma 3 12B" else model_3n

    messages = []
    if system_prompt:
        messages.append(
            {"role": "system", "content": [{"type": "text", "text": system_prompt}]}
        )
    messages.extend(process_history(history))
    messages.append(
        {"role": "user", "content": process_user_input(message, max_images)}
    )

    inputs = input_processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(device=selected_model.device, dtype=torch.bfloat16)

    streamer = TextIteratorStreamer(
        input_processor, skip_prompt=True, skip_special_tokens=True, timeout=60.0
    )
    generate_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        do_sample=True,
    )
    t = Thread(target=selected_model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output


demo = gr.ChatInterface(
    fn=run,
    type="messages",
    chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
    textbox=gr.MultimodalTextbox(
        file_types=[".mp4", ".jpg", ".png"], file_count="multiple", autofocus=True
    ),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
        gr.Dropdown(
            label="Model",
            choices=["Gemma 3 12B", "Gemma 3n E4B"],
            value="Gemma 3 12B"
        ),
        gr.Slider(
            label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
        ),
        gr.Slider(label="Max Images", minimum=1, maximum=4, step=1, value=2),
        gr.Slider(
            label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7
        ),
        gr.Slider(
            label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.9
        ),
        gr.Slider(
            label="Top K", minimum=1, maximum=100, step=1, value=50
        ),
        gr.Slider(
            label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1
        )
    ],
    stop_btn=False,
)

if __name__ == "__main__":
    demo.launch()