Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,939 Bytes
b5bcf5a 76e1435 b5bcf5a 76e1435 b5bcf5a 6a31985 b5bcf5a 6a31985 b87bea7 45a53c4 b87bea7 76e1435 67d411a eab0adb 45a53c4 76e1435 45a53c4 67d411a 76e1435 45a53c4 76e1435 45a53c4 76e1435 45a53c4 76e1435 e4b23f9 76e1435 e4b23f9 ea5eb99 e4b23f9 ea5eb99 bc0a046 ea5eb99 bc0a046 e4b23f9 7641a99 e4b23f9 7641a99 e4b23f9 c89883c e4b23f9 7641a99 e4b23f9 7641a99 b87bea7 7641a99 397b627 b87bea7 397b627 fd3c6d5 7641a99 b87bea7 0c4170f b87bea7 0c4170f 7641a99 b87bea7 7641a99 397b627 7641a99 b87bea7 7641a99 b87bea7 7641a99 b87bea7 7641a99 fd3c6d5 7641a99 b87bea7 7641a99 397b627 b87bea7 fd3c6d5 b87bea7 397b627 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import torch
from huggingface_hub import login
from collections.abc import Iterator
from transformers import (
Gemma3ForConditionalGeneration,
TextIteratorStreamer,
Gemma3Processor,
)
import spaces
import tempfile
from threading import Thread
import gradio as gr
import os
from dotenv import load_dotenv, find_dotenv
import cv2
from loguru import logger
from PIL import Image
dotenv_path = find_dotenv()
load_dotenv(dotenv_path)
MODEL_CONFIGS = {
"Gemma 3 4B IT": {
"id": os.getenv("MODEL_ID_27", "google/gemma-3-4b-it"),
"supports_video": True,
"supports_pdf": False
},
"Gemma 3 1B IT": {
"id": os.getenv("MODEL_ID_12", "google/gemma-3-1b-it"),
"supports_video": True,
"supports_pdf": False
},
"Gemma 3N E4B IT": {
"id": os.getenv("MODEL_ID_3N", "google/gemma-3n-E4B-it"),
"supports_video": False,
"supports_pdf": False
}
}
# Load all models and processors
models = {}
processor = Gemma3Processor.from_pretrained("google/gemma-3-4b-it")
for model_name, config in MODEL_CONFIGS.items():
logger.info(f"Loading {model_name}...")
models[model_name] = Gemma3ForConditionalGeneration.from_pretrained(
config["id"],
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager",
)
logger.info(f"✓ {model_name} loaded successfully")
# Current model selection (default)
current_model = "Gemma 3 27B IT"
def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]:
frames: list[tuple[Image.Image, float]] = []
capture = cv2.VideoCapture(video_path)
if not capture.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
fps = capture.get(cv2.CAP_PROP_FPS)
total_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(total_frames // max_images, 1)
max_position = min(total_frames, max_images * frame_interval)
i = 0
while i < max_position and len(frames) < max_images:
capture.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = capture.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
i += frame_interval
capture.release()
return frames
def process_video(video_path: str, max_images: int) -> list[dict]:
result_content = []
frames = get_frames(video_path, max_images)
for frame in frames:
image, timestamp = frame
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image.save(temp_file.name)
result_content.append({"type": "text", "text": f"Frame {timestamp}:"})
result_content.append({"type": "image", "url": temp_file.name})
logger.debug(
f"Processed {len(frames)} frames from video {video_path} with frames {result_content}"
)
return result_content
def process_user_input(message: dict, max_images: int) -> list[dict]:
if not message["files"]:
return [{"type": "text", "text": message["text"]}]
result_content = [{"type": "text", "text": message["text"]}]
for file_path in message["files"]:
if file_path.endswith((".mp4", ".mov")):
result_content = [*result_content, *process_video(file_path, max_images)]
else:
result_content = [*result_content, {"type": "image", "url": file_path}]
return result_content
def process_history(history: list[dict]) -> list[dict]:
messages = []
content_buffer = []
for item in history:
if item["role"] == "assistant":
if content_buffer:
messages.append({"role": "user", "content": content_buffer})
content_buffer = []
messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": item["content"]}],
}
)
else:
content = item["content"]
if isinstance(content, str):
content_buffer.append({"type": "text", "text": content})
elif isinstance(content, tuple) and len(content) > 0:
file_path = content[0]
if file_path.endswith((".mp4", ".mov")):
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
else:
content_buffer.append({"type": "image", "url": file_path})
if content_buffer:
messages.append({"role": "user", "content": content_buffer})
return messages
def get_supported_file_types(model_name: str) -> list[str]:
"""Get supported file types for the selected model."""
config = MODEL_CONFIGS[model_name]
base_types = [".jpg", ".png", ".jpeg", ".gif", ".bmp", ".webp"]
if config["supports_video"]:
base_types.extend([".mp4", ".mov", ".avi"])
if config["supports_pdf"]:
base_types.append(".pdf")
return base_types
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
model_name: str,
system_prompt: str,
max_new_tokens: int,
max_images: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
) -> Iterator[str]:
global current_model
if model_name != current_model:
current_model = model_name
logger.info(f"Switched to model: {model_name}")
logger.debug(
f"\n message: {message} \n history: {history} \n model: {model_name} \n "
f"system_prompt: {system_prompt} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
)
config = MODEL_CONFIGS[model_name]
if not config["supports_video"] and message.get("files"):
for file_path in message["files"]:
if file_path.endswith((".mp4", ".mov", ".avi")):
yield "Error: Selected model does not support video files. Please choose a video-capable model."
return
messages = []
if system_prompt:
messages.append(
{"role": "system", "content": [{"type": "text", "text": system_prompt}]}
)
messages.extend(process_history(history))
messages.append(
{"role": "user", "content": process_user_input(message, max_images)}
)
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=models[current_model].device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=True,
)
t = Thread(target=models[current_model].generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output
def create_interface():
"""Create interface with model selector."""
initial_file_types = get_supported_file_types(current_model)
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=initial_file_types,
file_count="multiple",
autofocus=True
),
multimodal=True,
additional_inputs=[
gr.Dropdown(
label="Model",
choices=list(MODEL_CONFIGS.keys()),
value=current_model,
info="Select which model to use for generation"
),
gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
gr.Slider(
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
),
gr.Slider(label="Max Images", minimum=1, maximum=8, step=1, value=2),
gr.Slider(
label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7
),
gr.Slider(
label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.9
),
gr.Slider(
label="Top K", minimum=1, maximum=100, step=1, value=50
),
gr.Slider(
label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1
),
],
stop_btn=False,
title="Multi-Model Gemma Chat"
)
return demo
demo = create_interface()
if __name__ == "__main__":
demo.launch()
|