Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,461 Bytes
b5bcf5a ce64ebd b5bcf5a 76e1435 78ef809 76e1435 b5bcf5a 76e1435 b5bcf5a 6a31985 b5bcf5a 6a31985 5f4b02a 6a31985 c0fc237 6a31985 d7dcf58 c0fc237 3a8e58d f3a1509 97a997a f3a1509 97a997a f3a1509 45a53c4 76e1435 3a8e58d 67d411a 3a8e58d eab0adb 45a53c4 76e1435 45a53c4 67d411a 76e1435 45a53c4 76e1435 45a53c4 76e1435 45a53c4 76e1435 e4b23f9 76e1435 e4b23f9 ea5eb99 e4b23f9 5f4b02a ea5eb99 bc0a046 ea5eb99 bc0a046 3a8e58d bc0a046 3a8e58d 5f4b02a bc0a046 e4b23f9 7641a99 e4b23f9 7641a99 e4b23f9 c89883c 6fc4e80 c89883c e4b23f9 7641a99 e4b23f9 7641a99 397b627 707a100 d7dcf58 397b627 fd3c6d5 7641a99 c0fc237 707a100 993e246 707a100 0c4170f 707a100 0c4170f 7641a99 d7dcf58 7641a99 397b627 7641a99 c0fc237 7641a99 d7dcf58 7641a99 d54c706 7641a99 fd3c6d5 7641a99 d7dcf58 7641a99 397b627 b87bea7 c0fc237 5f4b02a c0fc237 707a100 993e246 707a100 993e246 707a100 993e246 707a100 d7dcf58 7d5f6e0 d7dcf58 c0fc237 397b627 707a100 993e246 707a100 397b627 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import torch
torch._dynamo.config.disable = True
from collections.abc import Iterator
from transformers import (
Gemma3ForConditionalGeneration,
TextIteratorStreamer,
Gemma3Processor,
Gemma3nForConditionalGeneration,
)
import spaces
import tempfile
from threading import Thread
import gradio as gr
import os
from dotenv import load_dotenv, find_dotenv
import cv2
from loguru import logger
from PIL import Image
import fitz
dotenv_path = find_dotenv()
load_dotenv(dotenv_path)
model_12_id = os.getenv("MODEL_12_ID", "google/gemma-3-12b-it")
model_3n_id = os.getenv("MODEL_3N_ID", "google/gemma-3n-E4B-it")
MAX_VIDEO_SIZE = 100 * 1024 * 1024 # 100 MB
MAX_IMAGE_SIZE = 10 * 1024 * 1024 # 10 MB
input_processor = Gemma3Processor.from_pretrained(model_12_id)
model_12 = Gemma3ForConditionalGeneration.from_pretrained(
model_12_id,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager",
)
model_3n = Gemma3nForConditionalGeneration.from_pretrained(
model_3n_id,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager",
)
def check_file_size(file_path: str) -> bool:
if not os.path.exists(file_path):
raise ValueError(f"File not found: {file_path}")
file_size = os.path.getsize(file_path)
if file_path.lower().endswith((".mp4", ".mov")):
if file_size > MAX_VIDEO_SIZE:
raise ValueError(f"Video file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_VIDEO_SIZE / (1024*1024):.0f}MB")
else:
if file_size > MAX_IMAGE_SIZE:
raise ValueError(f"Image file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_IMAGE_SIZE / (1024*1024):.0f}MB")
return True
def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]:
check_file_size(video_path)
frames: list[tuple[Image.Image, float]] = []
capture = cv2.VideoCapture(video_path)
if not capture.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
fps = capture.get(cv2.CAP_PROP_FPS)
total_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(total_frames // max_images, 1)
max_position = min(total_frames, max_images * frame_interval)
i = 0
while i < max_position and len(frames) < max_images:
capture.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = capture.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
i += frame_interval
capture.release()
return frames
def process_video(video_path: str, max_images: int) -> list[dict]:
result_content = []
frames = get_frames(video_path, max_images)
for frame in frames:
image, timestamp = frame
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image.save(temp_file.name)
result_content.append({"type": "text", "text": f"Frame {timestamp}:"})
result_content.append({"type": "image", "url": temp_file.name})
logger.debug(
f"Processed {len(frames)} frames from video {video_path} with frames {result_content}"
)
return result_content
def extract_pdf_text(pdf_path: str) -> str:
check_file_size(pdf_path)
try:
doc = fitz.open(pdf_path)
text_content = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text = page.get_text()
if text.strip(): # Only add non-empty pages
text_content.append(f"Page {page_num + 1}:\n{text}")
doc.close()
if not text_content:
return "No text content found in the PDF."
return "\n\n".join(text_content)
except Exception as e:
logger.error(f"Error extracting text from PDF {pdf_path}: {e}")
return ValueError(f"Failed to extract text from PDF: {str(e)}")
def process_user_input(message: dict, max_images: int) -> list[dict]:
if not message["files"]:
return [{"type": "text", "text": message["text"]}]
result_content = [{"type": "text", "text": message["text"]}]
for file_path in message["files"]:
try:
check_file_size(file_path)
except ValueError as e:
logger.error(f"File size check failed: {e}")
result_content.append({"type": "text", "text": f"Error: {str(e)}"})
continue
if file_path.endswith((".mp4", ".mov")):
try:
result_content = [*result_content, *process_video(file_path, max_images)]
except Exception as e:
logger.error(f"Video processing failed: {e}")
result_content.append({"type": "text", "text": f"Error processing video: {str(e)}"})
elif file_path.lower().endswith(".pdf"):
try:
pdf_text = extract_pdf_text(file_path)
result_content.append({"type": "text", "text": f"PDF Content:\n{pdf_text}"})
except Exception as e:
logger.error(f"PDF processing failed: {e}")
result_content.append({"type": "text", "text": f"Error processing PDF: {str(e)}"})
else:
result_content = [*result_content, {"type": "image", "url": file_path}]
return result_content
def process_history(history: list[dict]) -> list[dict]:
messages = []
content_buffer = []
for item in history:
if item["role"] == "assistant":
if content_buffer:
messages.append({"role": "user", "content": content_buffer})
content_buffer = []
messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": item["content"]}],
}
)
else:
content = item["content"]
if isinstance(content, str):
content_buffer.append({"type": "text", "text": content})
elif isinstance(content, tuple) and len(content) > 0:
file_path = content[0]
if file_path.endswith((".mp4", ".mov")):
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
elif file_path.lower().endswith(".pdf"):
content_buffer.append({"type": "text", "text": "[PDF uploaded previously]"})
else:
content_buffer.append({"type": "image", "url": file_path})
if content_buffer:
messages.append({"role": "user", "content": content_buffer})
return messages
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
system_prompt_preset: str,
custom_system_prompt: str,
model_choice: str,
max_new_tokens: int,
max_images: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
) -> Iterator[str]:
# Define preset system prompts
preset_prompts = {
"General Assistant": "You are a helpful AI assistant capable of analyzing images, videos, and PDF documents. Provide clear, accurate, and helpful responses to user queries.",
"Document Analyzer": "You are a specialized document analysis assistant. Focus on extracting key information, summarizing content, and answering specific questions about uploaded documents. For PDFs, provide structured analysis including main topics, key points, and relevant details. For images containing text, perform OCR-like analysis.",
"Visual Content Expert": "You are an expert in visual content analysis. When analyzing images, provide detailed descriptions of visual elements, composition, colors, objects, people, and scenes. For videos, describe the sequence of events, movements, and changes between frames. Identify artistic techniques, styles, and visual storytelling elements.",
"Educational Tutor": "You are a patient and encouraging educational tutor. Break down complex concepts into simple, understandable explanations. When analyzing educational materials (images, videos, or documents), focus on learning objectives, key concepts, and provide additional context or examples to enhance understanding.",
"Technical Reviewer": "You are a technical expert specializing in analyzing technical documents, diagrams, code screenshots, and instructional videos. Provide detailed technical insights, identify potential issues, suggest improvements, and explain technical concepts with precision and accuracy.",
"Creative Storyteller": "You are a creative storyteller who brings visual content to life through engaging narratives. When analyzing images or videos, create compelling stories, describe scenes with rich detail, and help users explore the creative and emotional aspects of visual content.",
}
# Determine which system prompt to use
if system_prompt_preset == "Custom Prompt":
system_prompt = custom_system_prompt
else:
system_prompt = preset_prompts.get(system_prompt_preset, custom_system_prompt)
logger.debug(
f"\n message: {message} \n history: {history} \n system_prompt_preset: {system_prompt_preset} \n "
f"system_prompt: {system_prompt} \n model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
)
selected_model = model_12 if model_choice == "Gemma 3 12B" else model_3n
messages = []
if system_prompt:
messages.append(
{"role": "system", "content": [{"type": "text", "text": system_prompt}]}
)
messages.extend(process_history(history))
messages.append(
{"role": "user", "content": process_user_input(message, max_images)}
)
inputs = input_processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=selected_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
input_processor, skip_prompt=True, skip_special_tokens=True, timeout=60.0
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=True,
)
t = Thread(target=selected_model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=[".mp4", ".jpg", ".png", ".pdf"], file_count="multiple", autofocus=True
),
multimodal=True,
additional_inputs=[
gr.Dropdown(
label="System Prompt Preset",
choices=[
"General Assistant",
"Document Analyzer",
"Visual Content Expert",
"Educational Tutor",
"Technical Reviewer",
"Creative Storyteller",
"Custom Prompt"
],
value="General Assistant",
info="System prompts define the AI's role and behavior. Choose a preset that matches your task, or select 'Custom Prompt' to write your own specialized instructions."
),
gr.Textbox(
label="Custom System Prompt",
value="You are a helpful AI assistant capable of analyzing images, videos, and PDF documents. Provide clear, accurate, and helpful responses to user queries.",
lines=3,
info="Edit this field when 'Custom Prompt' is selected above, or modify any preset"
),
gr.Dropdown(
label="Model",
choices=["Gemma 3 12B", "Gemma 3n E4B"],
value="Gemma 3 12B",
info="Gemma 3 12B: More powerful and detailed responses, but slower processing. Gemma 3n E4B: Faster processing with efficient performance for most tasks."
),
gr.Slider(
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
),
gr.Slider(label="Max Images", minimum=1, maximum=4, step=1, value=2),
gr.Slider(
label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7
),
gr.Slider(
label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.9
),
gr.Slider(
label="Top K", minimum=1, maximum=100, step=1, value=50
),
gr.Slider(
label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1
)
],
stop_btn=False,
)
# Add JavaScript to update custom prompt when preset changes
def update_custom_prompt(preset_choice):
preset_prompts = {
"General Assistant": "You are a helpful AI assistant capable of analyzing images, videos, and PDF documents. Provide clear, accurate, and helpful responses to user queries.",
"Document Analyzer": "You are a specialized document analysis assistant. Focus on extracting key information, summarizing content, and answering specific questions about uploaded documents. For PDFs, provide structured analysis including main topics, key points, and relevant details. For images containing text, perform OCR-like analysis.",
"Visual Content Expert": "You are an expert in visual content analysis. When analyzing images, provide detailed descriptions of visual elements, composition, colors, objects, people, and scenes. For videos, describe the sequence of events, movements, and changes between frames. Identify artistic techniques, styles, and visual storytelling elements.",
"Educational Tutor": "You are a patient and encouraging educational tutor. Break down complex concepts into simple, understandable explanations. When analyzing educational materials (images, videos, or documents), focus on learning objectives, key concepts, and provide additional context or examples to enhance understanding.",
"Technical Reviewer": "You are a technical expert specializing in analyzing technical documents, diagrams, code screenshots, and instructional videos. Provide detailed technical insights, identify potential issues, suggest improvements, and explain technical concepts with precision and accuracy.",
"Creative Storyteller": "You are a creative storyteller who brings visual content to life through engaging narratives. When analyzing images or videos, create compelling stories, describe scenes with rich detail, and help users explore the creative and emotional aspects of visual content.",
"Custom Prompt": ""
}
return preset_prompts.get(preset_choice, "")
# Connect the dropdown to update the textbox
with demo:
preset_dropdown = demo.additional_inputs[0]
custom_textbox = demo.additional_inputs[1]
preset_dropdown.change(
fn=update_custom_prompt,
inputs=[preset_dropdown],
outputs=[custom_textbox]
)
if __name__ == "__main__":
demo.launch()
|