darkbreakerk's picture
Create Work Flow and guest weights
49ecd5d
import json
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Load the JSON data
with open('Datasets/Query/datasets_text.json', 'r', encoding='utf-8') as file:
data = json.load(file)
# Prepare sentences and labels
sentences = [item[0] for item in data["annotations"]]
labels = [item[1]['entities'] for item in data["annotations"]]
# Define tags
tags = data["classes"]
# tags = ['<pad>'] + tags
# Convert tags to indices
tag2idx = {tag: 0 for idx, tag in enumerate(tags)}
for label in labels:
for entity in label:
tag2idx[entity[1]] = tag2idx[entity[1]] + 1
# Sort the dictionary by values
sorted_tags_dict = dict(sorted(tag2idx.items(), key=lambda item: item[1],reverse=True))
sorted_tags = {key: value for key, value in sorted_tags_dict.items()}
sorted_tags = list(sorted_tags)
for i in range(len(sorted_tags)):
sorted_tags[i] = sorted_tags[i].replace(" ", "_")
destinations = pd.read_excel("Datasets/Places/des_retags_copilot.xlsx")
vectorizer = CountVectorizer(max_features=10000, stop_words="english")
tags_vector = vectorizer.fit_transform(destinations["tags"].values.astype('U')).toarray()
tags_vector = tags_vector[1:]
feature_names = vectorizer.get_feature_names_out()