Spaces:
Sleeping
Sleeping
| import re | |
| import json | |
| import numpy as np | |
| def get_hparams_from_file(config_path): | |
| with open(config_path, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| return hparams | |
| class HParams: | |
| def __init__(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if type(v) == dict: | |
| v = HParams(**v) | |
| self[k] = v | |
| def keys(self): | |
| return self.__dict__.keys() | |
| def items(self): | |
| return self.__dict__.items() | |
| def values(self): | |
| return self.__dict__.values() | |
| def __len__(self): | |
| return len(self.__dict__) | |
| def __getitem__(self, key): | |
| return getattr(self, key) | |
| def __setitem__(self, key, value): | |
| return setattr(self, key, value) | |
| def __contains__(self, key): | |
| return key in self.__dict__ | |
| def __repr__(self): | |
| return self.__dict__.__repr__() | |
| def string_to_bits(string, pad_len=8): | |
| # Convert each character to its ASCII value | |
| ascii_values = [ord(char) for char in string] | |
| # Convert ASCII values to binary representation | |
| binary_values = [bin(value)[2:].zfill(8) for value in ascii_values] | |
| # Convert binary strings to integer arrays | |
| bit_arrays = [[int(bit) for bit in binary] for binary in binary_values] | |
| # Convert list of arrays to NumPy array | |
| numpy_array = np.array(bit_arrays) | |
| numpy_array_full = np.zeros((pad_len, 8), dtype=numpy_array.dtype) | |
| numpy_array_full[:, 2] = 1 | |
| max_len = min(pad_len, len(numpy_array)) | |
| numpy_array_full[:max_len] = numpy_array[:max_len] | |
| return numpy_array_full | |
| def bits_to_string(bits_array): | |
| # Convert each row of the array to a binary string | |
| binary_values = [''.join(str(bit) for bit in row) for row in bits_array] | |
| # Convert binary strings to ASCII values | |
| ascii_values = [int(binary, 2) for binary in binary_values] | |
| # Convert ASCII values to characters | |
| output_string = ''.join(chr(value) for value in ascii_values) | |
| return output_string | |
| def split_sentence(text, min_len=10, language_str='[EN]'): | |
| if language_str in ['EN']: | |
| sentences = split_sentences_latin(text, min_len=min_len) | |
| else: | |
| sentences = split_sentences_zh(text, min_len=min_len) | |
| return sentences | |
| def split_sentences_latin(text, min_len=10): | |
| """Split Long sentences into list of short ones | |
| Args: | |
| str: Input sentences. | |
| Returns: | |
| List[str]: list of output sentences. | |
| """ | |
| # deal with dirty sentences | |
| text = re.sub('[。!?;]', '.', text) | |
| text = re.sub('[,]', ',', text) | |
| text = re.sub('[“”]', '"', text) | |
| text = re.sub('[‘’]', "'", text) | |
| text = re.sub(r"[\<\>\(\)\[\]\"\«\»]+", "", text) | |
| text = re.sub('[\n\t ]+', ' ', text) | |
| text = re.sub('([,.!?;])', r'\1 $#!', text) | |
| # split | |
| sentences = [s.strip() for s in text.split('$#!')] | |
| if len(sentences[-1]) == 0: del sentences[-1] | |
| new_sentences = [] | |
| new_sent = [] | |
| count_len = 0 | |
| for ind, sent in enumerate(sentences): | |
| # print(sent) | |
| new_sent.append(sent) | |
| count_len += len(sent.split(" ")) | |
| if count_len > min_len or ind == len(sentences) - 1: | |
| count_len = 0 | |
| new_sentences.append(' '.join(new_sent)) | |
| new_sent = [] | |
| return merge_short_sentences_latin(new_sentences) | |
| def merge_short_sentences_latin(sens): | |
| """Avoid short sentences by merging them with the following sentence. | |
| Args: | |
| List[str]: list of input sentences. | |
| Returns: | |
| List[str]: list of output sentences. | |
| """ | |
| sens_out = [] | |
| for s in sens: | |
| # If the previous sentense is too short, merge them with | |
| # the current sentence. | |
| if len(sens_out) > 0 and len(sens_out[-1].split(" ")) <= 2: | |
| sens_out[-1] = sens_out[-1] + " " + s | |
| else: | |
| sens_out.append(s) | |
| try: | |
| if len(sens_out[-1].split(" ")) <= 2: | |
| sens_out[-2] = sens_out[-2] + " " + sens_out[-1] | |
| sens_out.pop(-1) | |
| except: | |
| pass | |
| return sens_out | |
| def split_sentences_zh(text, min_len=10): | |
| text = re.sub('[。!?;]', '.', text) | |
| text = re.sub('[,]', ',', text) | |
| # 将文本中的换行符、空格和制表符替换为空格 | |
| text = re.sub('[\n\t ]+', ' ', text) | |
| # 在标点符号后添加一个空格 | |
| text = re.sub('([,.!?;])', r'\1 $#!', text) | |
| # 分隔句子并去除前后空格 | |
| # sentences = [s.strip() for s in re.split('(。|!|?|;)', text)] | |
| sentences = [s.strip() for s in text.split('$#!')] | |
| if len(sentences[-1]) == 0: del sentences[-1] | |
| new_sentences = [] | |
| new_sent = [] | |
| count_len = 0 | |
| for ind, sent in enumerate(sentences): | |
| new_sent.append(sent) | |
| count_len += len(sent) | |
| if count_len > min_len or ind == len(sentences) - 1: | |
| count_len = 0 | |
| new_sentences.append(' '.join(new_sent)) | |
| new_sent = [] | |
| return merge_short_sentences_zh(new_sentences) | |
| def merge_short_sentences_zh(sens): | |
| # return sens | |
| """Avoid short sentences by merging them with the following sentence. | |
| Args: | |
| List[str]: list of input sentences. | |
| Returns: | |
| List[str]: list of output sentences. | |
| """ | |
| sens_out = [] | |
| for s in sens: | |
| # If the previous sentense is too short, merge them with | |
| # the current sentence. | |
| if len(sens_out) > 0 and len(sens_out[-1]) <= 2: | |
| sens_out[-1] = sens_out[-1] + " " + s | |
| else: | |
| sens_out.append(s) | |
| try: | |
| if len(sens_out[-1]) <= 2: | |
| sens_out[-2] = sens_out[-2] + " " + sens_out[-1] | |
| sens_out.pop(-1) | |
| except: | |
| pass | |
| return sens_out |