import streamlit as st import os from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langchain_core.messages import HumanMessage, SystemMessage # Set environment variables for Hugging Face token hf = os.getenv('Data_science') os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf os.environ['HF_TOKEN'] = hf # Page config st.set_page_config(page_title="Deep Learning Mentor Chat", layout="centered") # Inject CSS styling from homepage st.markdown(""" """, unsafe_allow_html=True) # Title st.title("🧠 Deep Learning Mentor Chat") # Sidebar experience selector st.sidebar.title("Mentor Preferences") exp = st.sidebar.selectbox("Select experience level:", ['Beginner', 'Intermediate', 'Expert']) # Initialize LLM mentor_llm = HuggingFaceEndpoint( repo_id='Qwen/Qwen3-32B', provider='sambanova', temperature=0.7, max_new_tokens=150, task='conversational' ) deep_mentor = ChatHuggingFace( llm=mentor_llm, repo_id='Qwen/Qwen3-32B', provider='sambanova', temperature=0.7, max_new_tokens=150, task='conversational' ) # Session key PAGE_KEY = "deep_learning_chat_history" if PAGE_KEY not in st.session_state: st.session_state[PAGE_KEY] = [] # Chat form with st.form(key="chat_form"): user_input = st.text_input("Ask your question:") submit = st.form_submit_button("Send") # Handle submission if submit and user_input: system_prompt = ( f"You are a deep learning mentor with {exp.lower()} level expertise. " f"Answer only deep learning-related questions, teach in a friendly tone, and limit responses to 150 words. " f"If a question is outside deep learning, politely say it's out of scope." ) messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] result = deep_mentor.invoke(messages) st.session_state[PAGE_KEY].append((user_input, result.content)) # Display chat history st.subheader("🗨️ Chat History") for user, bot in st.session_state[PAGE_KEY]: st.markdown(f"**You:** {user}") st.markdown(f"**Mentor:** {bot}") st.markdown("---")