DataScience / pages /deep_learning.py
67Ayush87's picture
Update pages/deep_learning.py
214baa3 verified
import streamlit as st
import os
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_core.messages import HumanMessage, SystemMessage
# Set environment variables for Hugging Face token
hf = os.getenv('Data_science')
os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf
os.environ['HF_TOKEN'] = hf
# Page config
st.set_page_config(page_title="Deep Learning Mentor Chat", layout="centered")
# Inject CSS styling from homepage
st.markdown("""
<style>
.main {
background: linear-gradient(135deg, #430089 0%, #82ffa1 100%);
padding: 2rem;
font-family: 'Segoe UI', sans-serif;
}
.stButton>button {
background: #ffffff10;
border: 2px solid #ffffff50;
color: white;
font-size: 18px;
font-weight: 600;
padding: 0.8em 1.2em;
border-radius: 12px;
width: 100%;
transition: 0.3s ease;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
}
.stButton>button:hover {
background: #ffffff30;
border-color: #fff;
color: #ffffff;
}
h1, h3, p, label {
color: #ffffff;
text-align: center;
}
hr {
border: 1px solid #ffffff50;
margin: 2em 0;
}
.css-1aumxhk {
color: white;
}
</style>
""", unsafe_allow_html=True)
# Title
st.title("🧠 Deep Learning Mentor Chat")
# Sidebar experience selector
st.sidebar.title("Mentor Preferences")
exp = st.sidebar.selectbox("Select experience level:", ['Beginner', 'Intermediate', 'Expert'])
# Initialize LLM
mentor_llm = HuggingFaceEndpoint(
repo_id='Qwen/Qwen3-32B',
provider='sambanova',
temperature=0.7,
max_new_tokens=150,
task='conversational'
)
deep_mentor = ChatHuggingFace(
llm=mentor_llm,
repo_id='Qwen/Qwen3-32B',
provider='sambanova',
temperature=0.7,
max_new_tokens=150,
task='conversational'
)
# Session key
PAGE_KEY = "deep_learning_chat_history"
if PAGE_KEY not in st.session_state:
st.session_state[PAGE_KEY] = []
# Chat form
with st.form(key="chat_form"):
user_input = st.text_input("Ask your question:")
submit = st.form_submit_button("Send")
# Handle submission
if submit and user_input:
system_prompt = (
f"You are a deep learning mentor with {exp.lower()} level expertise. "
f"Answer only deep learning-related questions, teach in a friendly tone, and limit responses to 150 words. "
f"If a question is outside deep learning, politely say it's out of scope."
)
messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)]
result = deep_mentor.invoke(messages)
st.session_state[PAGE_KEY].append((user_input, result.content))
# Display chat history
st.subheader("🗨️ Chat History")
for user, bot in st.session_state[PAGE_KEY]:
st.markdown(f"**You:** {user}")
st.markdown(f"**Mentor:** {bot}")
st.markdown("---")