|
import spaces |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
|
|
from pathlib import Path |
|
import urllib.parse |
|
import os |
|
import requests |
|
|
|
import logging |
|
import traceback |
|
|
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
try: |
|
logging.basicConfig(level=logging.DEBUG) |
|
SPACER = "\n" + "*" * 50 + "\n" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
|
|
|
|
|
|
civitai_token = os.environ.get("CIVTAI_TOKEN") |
|
lora_path = Path("./lora") |
|
file_name = "RealMessyEaster_v09_exp.safetensors" |
|
file_path = lora_path / file_name |
|
|
|
base_url = "https://civitai.com/api/download/models/414396" |
|
params = {"token": civitai_token} |
|
encoded_params = urllib.parse.urlencode(params) |
|
full_url = f"{base_url}?{encoded_params}" |
|
|
|
if not lora_path.exists(): |
|
lora_path.mkdir(parents=True, exist_ok=True) |
|
logging.info(f"{SPACER}Created path {lora_path}{SPACER}") |
|
|
|
if not file_path.exists(): |
|
logging.info( |
|
f"{SPACER}File {file_name} does not exist. Downloading {full_url[20:]}.{SPACER}" |
|
) |
|
response = requests.get(full_url) |
|
response.raise_for_status() |
|
with open(file_path, "wb") as f: |
|
f.write(response.content) |
|
logging.info(f"{SPACER}Download ready.") |
|
else: |
|
logging.info(f"{SPACER}File {file_name} already exists.{SPACER}") |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
logging.info(f"{SPACER}CUDA available, setting dtype to float16{SPACER}") |
|
else: |
|
torch_dtype = torch.float32 |
|
logging.info(f"{SPACER}CUDA not available, setting dtype to float32{SPACER}") |
|
|
|
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) |
|
|
|
pipe.load_lora_weights( |
|
lora_path, |
|
weight_name=file_name, |
|
adapter_name="messy_easter", |
|
) |
|
pipe = pipe.to(device) |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
|
|
TITLE = """<h1><center>🥙 Messy Easter, Everybody! 🥙</center></h1> |
|
<center><h2>This year, let AI hide easter eggs for you.</h2></center></br><p>This SDXL LoRA experiment will place a small number of tiny easter eggs somewhere in the generated image. <strong>Apply. Generate. Have fun searching!</strong> RealMessyEaster is trained on 75 labelled images of single small plastic eggs in a messy surrounding, mostly at the edges. </br></br>Goals:</br> |
|
<ul> |
|
<li>Integrating an easter egg to look for.</li> |
|
<li>Adding "messyness" to the background, to make eggs a little harder to spot.</li> |
|
</ul></br> |
|
Don't forget the trigger words in your prompt: '1easteregg', 'messy'. You can find and download the LoRa <a href='https://civitai.com/models/370927/realmessyeaster'>on civitai.</a></p>""" |
|
|
|
PLACEHOLDER = """Describe a scene containing words 'messy' and '1easteregg'""" |
|
|
|
except Exception as e: |
|
logging.error( |
|
f"{SPACER}Error {e}. Traceback {traceback.format_exc()}{SPACER}\nExiting" |
|
) |
|
exit |
|
|
|
|
|
@spaces.GPU |
|
def infer( |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
if "messy" not in prompt: |
|
prompt = f"Messy scene. {prompt}" |
|
logging.info("Triggerword 'messy' added to prompt.") |
|
|
|
if "1easteregg" not in prompt: |
|
prompt = f"1easteregg hidden in the scene. {prompt}" |
|
|
|
prompt = f"{prompt} Very detailed, 8k, documentary art photography, Martin Parr." |
|
negative_prompt = f"{negative_prompt} Distorted, warped." |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
lora_scale = 0.9 |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
"1easteregg hidden in a messy laundry room with piles of laundry.", |
|
"1easteregg hidden in a messy artist’s studio stained with colours.", |
|
"1easteregg hidden in a messy punk band practice room full of instruments.", |
|
"1easteregg hidden in a messy teenager’s bedroom, clothes on the floor.", |
|
"1easteregg hidden in a messy and packed antique store.", |
|
] |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
with gr.Column(): |
|
gr.HTML(TITLE) |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder=PLACEHOLDER, |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=768, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=7.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=40, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|