Spaces:
Runtime error
Runtime error
0.2 adding cloned space
Browse files- README.md +2 -2
- app.py +192 -47
- requirements.txt +6 -1
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Bot Royale
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
|
@@ -10,4 +10,4 @@ pinned: false
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
| 1 |
---
|
| 2 |
title: Bot Royale
|
| 3 |
+
emoji: 🥊
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
A chatbot arena battle royale, based on a script by Mohamed Rashad for the [Arabic Chatbot Arena](MohamedRashad/Arabic-Chatbot-Arena). Using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
CHANGED
|
@@ -1,63 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"""
|
| 43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 44 |
-
"""
|
| 45 |
-
demo = gr.ChatInterface(
|
| 46 |
-
respond,
|
| 47 |
-
additional_inputs=[
|
| 48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 51 |
-
gr.Slider(
|
| 52 |
-
minimum=0.1,
|
| 53 |
-
maximum=1.0,
|
| 54 |
-
value=0.95,
|
| 55 |
-
step=0.05,
|
| 56 |
-
label="Top-p (nucleus sampling)",
|
| 57 |
-
),
|
| 58 |
-
],
|
| 59 |
-
)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 3 |
+
import torch
|
| 4 |
import gradio as gr
|
| 5 |
+
import logging
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
+
from threading import Thread
|
| 10 |
+
import subprocess
|
| 11 |
+
subprocess.run('pip install -U flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 12 |
+
|
| 13 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 14 |
+
|
| 15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 16 |
+
login(token=HF_TOKEN)
|
| 17 |
+
|
| 18 |
+
models_available = [
|
| 19 |
+
"Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
|
| 20 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
tokenizer_a, model_a = None, None
|
| 24 |
+
tokenizer_b, model_b = None, None
|
| 25 |
+
torch_dtype = torch.bfloat16
|
| 26 |
+
attn_implementation = "flash_attention_2"
|
| 27 |
|
| 28 |
+
def load_model_a(model_id):
|
| 29 |
+
global tokenizer_a, model_a
|
| 30 |
+
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
|
| 31 |
+
logging.debug(f"model A: {tokenizer_a.eos_token}")
|
| 32 |
+
try:
|
| 33 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
model_id,
|
| 35 |
+
torch_dtype=torch_dtype,
|
| 36 |
+
device_map="auto",
|
| 37 |
+
attn_implementation=attn_implementation,
|
| 38 |
+
trust_remote_code=True,
|
| 39 |
+
).eval()
|
| 40 |
+
except Exception as e:
|
| 41 |
+
logging.debug(f"Using default attention implementation in {model_id}")
|
| 42 |
+
logging.debug(f"Error: {e}")
|
| 43 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_id,
|
| 45 |
+
torch_dtype=torch_dtype,
|
| 46 |
+
device_map="auto",
|
| 47 |
+
trust_remote_code=True,
|
| 48 |
+
).eval()
|
| 49 |
+
model_a.tie_weights()
|
| 50 |
+
return gr.update(label=model_id)
|
| 51 |
+
|
| 52 |
+
def load_model_b(model_id):
|
| 53 |
+
global tokenizer_b, model_b
|
| 54 |
+
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
|
| 55 |
+
logging.debug(f"model B: {tokenizer_b.eos_token}")
|
| 56 |
+
try:
|
| 57 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
| 58 |
+
model_id,
|
| 59 |
+
torch_dtype=torch_dtype,
|
| 60 |
+
device_map="auto",
|
| 61 |
+
attn_implementation=attn_implementation,
|
| 62 |
+
trust_remote_code=True,
|
| 63 |
+
).eval()
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logging.debug(f"Error: {e}")
|
| 66 |
+
logging.debug(f"Using default attention implementation in {model_id}")
|
| 67 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
| 68 |
+
model_id,
|
| 69 |
+
torch_dtype=torch_dtype,
|
| 70 |
+
device_map="auto",
|
| 71 |
+
trust_remote_code=True,
|
| 72 |
+
).eval()
|
| 73 |
+
model_b.tie_weights()
|
| 74 |
+
return gr.update(label=model_id)
|
| 75 |
|
| 76 |
+
@spaces.GPU()
|
| 77 |
+
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
|
| 80 |
+
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
|
| 83 |
+
input_text_list = [{"role": "user", "content": input_text}]
|
| 84 |
|
| 85 |
+
chat_history_a = []
|
| 86 |
+
for user, assistant in chatbot_a:
|
| 87 |
+
chat_history_a.append({"role": "user", "content": user})
|
| 88 |
+
chat_history_a.append({"role": "assistant", "content": assistant})
|
| 89 |
|
| 90 |
+
chat_history_b = []
|
| 91 |
+
for user, assistant in chatbot_b:
|
| 92 |
+
chat_history_b.append({"role": "user", "content": user})
|
| 93 |
+
chat_history_b.append({"role": "assistant", "content": assistant})
|
| 94 |
+
|
| 95 |
+
base_messages = system_prompt_list + chat_history_a + input_text_list
|
| 96 |
+
new_messages = system_prompt_list + chat_history_b + input_text_list
|
| 97 |
+
|
| 98 |
+
input_ids_a = tokenizer_a.apply_chat_template(
|
| 99 |
+
base_messages,
|
| 100 |
+
add_generation_prompt=True,
|
| 101 |
+
return_tensors="pt"
|
| 102 |
+
).to(model_a.device)
|
| 103 |
+
|
| 104 |
+
input_ids_b = tokenizer_b.apply_chat_template(
|
| 105 |
+
new_messages,
|
| 106 |
+
add_generation_prompt=True,
|
| 107 |
+
return_tensors="pt"
|
| 108 |
+
).to(model_b.device)
|
| 109 |
+
|
| 110 |
+
generation_kwargs_a = dict(
|
| 111 |
+
input_ids=input_ids_a,
|
| 112 |
+
streamer=text_streamer_a,
|
| 113 |
+
max_new_tokens=max_new_tokens,
|
| 114 |
+
pad_token_id=tokenizer_a.eos_token_id,
|
| 115 |
+
do_sample=True,
|
| 116 |
+
temperature=temperature,
|
| 117 |
+
top_p=top_p,
|
| 118 |
+
repetition_penalty=repetition_penalty,
|
| 119 |
+
)
|
| 120 |
+
generation_kwargs_b = dict(
|
| 121 |
+
input_ids=input_ids_b,
|
| 122 |
+
streamer=text_streamer_b,
|
| 123 |
+
max_new_tokens=max_new_tokens,
|
| 124 |
+
pad_token_id=tokenizer_b.eos_token_id,
|
| 125 |
+
do_sample=True,
|
| 126 |
temperature=temperature,
|
| 127 |
top_p=top_p,
|
| 128 |
+
repetition_penalty=repetition_penalty,
|
| 129 |
+
)
|
| 130 |
|
| 131 |
+
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
|
| 132 |
+
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
|
| 133 |
|
| 134 |
+
thread_a.start()
|
| 135 |
+
thread_b.start()
|
| 136 |
+
|
| 137 |
+
chatbot_a.append([input_text, ""])
|
| 138 |
+
chatbot_b.append([input_text, ""])
|
| 139 |
+
|
| 140 |
+
finished_a = False
|
| 141 |
+
finished_b = False
|
| 142 |
+
|
| 143 |
+
while not (finished_a and finished_b):
|
| 144 |
+
if not finished_a:
|
| 145 |
+
try:
|
| 146 |
+
text_a = next(text_streamer_a)
|
| 147 |
+
if tokenizer_a.eos_token in text_a:
|
| 148 |
+
eot_location = text_a.find(tokenizer_a.eos_token)
|
| 149 |
+
text_a = text_a[:eot_location]
|
| 150 |
+
finished_a = True
|
| 151 |
+
chatbot_a[-1][-1] += text_a
|
| 152 |
+
yield chatbot_a, chatbot_b
|
| 153 |
+
except StopIteration:
|
| 154 |
+
finished_a = True
|
| 155 |
+
|
| 156 |
+
if not finished_b:
|
| 157 |
+
try:
|
| 158 |
+
text_b = next(text_streamer_b)
|
| 159 |
+
if tokenizer_b.eos_token in text_b:
|
| 160 |
+
eot_location = text_b.find(tokenizer_b.eos_token)
|
| 161 |
+
text_b = text_b[:eot_location]
|
| 162 |
+
finished_b = True
|
| 163 |
+
chatbot_b[-1][-1] += text_b
|
| 164 |
+
yield chatbot_a, chatbot_b
|
| 165 |
+
except StopIteration:
|
| 166 |
+
finished_b = True
|
| 167 |
+
|
| 168 |
+
return chatbot_a, chatbot_b
|
| 169 |
+
|
| 170 |
+
def clear():
|
| 171 |
+
return [], []
|
| 172 |
+
|
| 173 |
+
arena_notes = """## Important Notes:
|
| 174 |
+
- Sometimes an error may occur when generating the response, in this case, please try again.
|
| 175 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
with gr.Blocks() as demo:
|
| 178 |
+
with gr.Column():
|
| 179 |
+
gr.HTML("<center><h1>🤖le Royale</h1></center>")
|
| 180 |
+
gr.Markdown(arena_notes)
|
| 181 |
+
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="أنت متحدث لبق باللغة العربية!", rtl=True, text_align="right", show_copy_button=True)
|
| 182 |
+
with gr.Row(variant="panel"):
|
| 183 |
+
with gr.Column():
|
| 184 |
+
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
|
| 185 |
+
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
| 186 |
+
with gr.Column():
|
| 187 |
+
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
|
| 188 |
+
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
| 189 |
+
with gr.Row(variant="panel"):
|
| 190 |
+
with gr.Column(scale=1):
|
| 191 |
+
submit_btn = gr.Button(value="Generate", variant="primary")
|
| 192 |
+
clear_btn = gr.Button(value="Clear", variant="secondary")
|
| 193 |
+
input_text = gr.Textbox(lines=1, label="", value="مرحبا", rtl=True, text_align="right", scale=3, show_copy_button=True)
|
| 194 |
+
with gr.Accordion(label="Generation Configurations", open=False):
|
| 195 |
+
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
|
| 196 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
|
| 197 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
|
| 198 |
+
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
| 199 |
+
|
| 200 |
+
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
|
| 201 |
+
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
|
| 202 |
+
|
| 203 |
+
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
| 204 |
+
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
| 205 |
+
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|
| 206 |
|
| 207 |
if __name__ == "__main__":
|
| 208 |
+
demo.queue().launch()
|
requirements.txt
CHANGED
|
@@ -1 +1,6 @@
|
|
| 1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.22.2
|
| 2 |
+
transformers==4.44.1
|
| 3 |
+
torch
|
| 4 |
+
accelerate==0.33.0
|
| 5 |
+
sentencepiece==0.2.0
|
| 6 |
+
spaces
|