krdmodel_ado / app.py
3ed0k4's picture
Create app.py
5296ad6 verified
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
# 1) Load the Central Kurdish (Arabic) Goldfish model
MODEL_ID = "goldfish-models/ckb_arab_full"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
model.eval()
# 2) Chat function: maintains history and generates replies
def chat_fn(user_message, history):
# Prepend [CLS] token and append [SEP]
prompt = tokenizer.cls_token + user_message + tokenizer.sep_token
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=128,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=0.9,
temperature=0.8
)
# Decode only the newly generated tokens
reply = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
history = history + [(user_message, reply)]
return history, history
# 3) Build Gradio Chat UI
with gr.Blocks() as demo:
gr.Markdown("## Chat with Goldfish’s Central Kurdish (Arabic) Model")
chatbot = gr.Chatbot()
txt = gr.Textbox(placeholder="Type your message here...")
clear = gr.Button("Clear")
txt.submit(chat_fn, [txt, chatbot], [chatbot, chatbot])
clear.click(lambda: None, None, chatbot)
# 4) Launch the app
if __name__ == "__main__":
demo.launch()