|
import gradio as gr |
|
import requests |
|
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
import torch |
|
import io |
|
import os |
|
|
|
|
|
HF_API_KEY = os.getenv("HF_API_KEY") |
|
if not HF_API_KEY: |
|
raise ValueError("HF_API_KEY is not set. Add it in Hugging Face 'Variables and Secrets'.") |
|
|
|
|
|
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" |
|
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
translator_model = "Helsinki-NLP/opus-mt-mul-en" |
|
translator = MarianMTModel.from_pretrained(translator_model).to(device) |
|
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model) |
|
|
|
|
|
generator_model = "EleutherAI/gpt-neo-1.3B" |
|
generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device) |
|
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model) |
|
if generator_tokenizer.pad_token is None: |
|
generator_tokenizer.pad_token = generator_tokenizer.eos_token |
|
|
|
def translate_tamil_to_english(text): |
|
"""Translates Tamil text to English.""" |
|
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) |
|
output = translator.generate(**inputs) |
|
return translator_tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
def generate_text(prompt): |
|
"""Generates a creative text based on English input.""" |
|
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device) |
|
output = generator.generate(**inputs, max_length=100) |
|
return generator_tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
def generate_image(prompt): |
|
"""Sends request to API for image generation.""" |
|
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt}) |
|
if response.status_code == 200: |
|
return Image.open(io.BytesIO(response.content)) |
|
return Image.new("RGB", (300, 300), "red") |
|
|
|
def process_input(tamil_text): |
|
"""Complete pipeline: Translation, Text Generation, and Image Generation.""" |
|
english_text = translate_tamil_to_english(tamil_text) |
|
creative_text = generate_text(english_text) |
|
image = generate_image(english_text) |
|
return english_text, creative_text, image |
|
|
|
|
|
interface = gr.Interface( |
|
fn=process_input, |
|
inputs=gr.Textbox(label="Enter Tamil Text"), |
|
outputs=[ |
|
gr.Textbox(label="Translated English Text"), |
|
gr.Textbox(label="Creative Text"), |
|
gr.Image(label="Generated Image") |
|
], |
|
title="Tamil to English Translator & Image Generator", |
|
description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text." |
|
) |
|
|
|
|
|
interface.launch() |
|
|