24Sureshkumar's picture
Update app.py
87884fb verified
import gradio as gr
import requests
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch
import io
import os
# Load Hugging Face API key securely
HF_API_KEY = os.getenv("HF_API_KEY")
if not HF_API_KEY:
raise ValueError("HF_API_KEY is not set. Add it in Hugging Face 'Variables and Secrets'.")
# API Endpoint for Image Generation
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load Tamil-to-English Translation Model
translator_model = "Helsinki-NLP/opus-mt-mul-en"
translator = MarianMTModel.from_pretrained(translator_model).to(device)
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
# Load Text Generation Model
generator_model = "EleutherAI/gpt-neo-1.3B"
generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
if generator_tokenizer.pad_token is None:
generator_tokenizer.pad_token = generator_tokenizer.eos_token
def translate_tamil_to_english(text):
"""Translates Tamil text to English."""
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
output = translator.generate(**inputs)
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
def generate_text(prompt):
"""Generates a creative text based on English input."""
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
output = generator.generate(**inputs, max_length=100)
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
def generate_image(prompt):
"""Sends request to API for image generation."""
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
if response.status_code == 200:
return Image.open(io.BytesIO(response.content))
return Image.new("RGB", (300, 300), "red") # Placeholder image for errors
def process_input(tamil_text):
"""Complete pipeline: Translation, Text Generation, and Image Generation."""
english_text = translate_tamil_to_english(tamil_text)
creative_text = generate_text(english_text)
image = generate_image(english_text)
return english_text, creative_text, image
# Create Gradio Interface
interface = gr.Interface(
fn=process_input,
inputs=gr.Textbox(label="Enter Tamil Text"),
outputs=[
gr.Textbox(label="Translated English Text"),
gr.Textbox(label="Creative Text"),
gr.Image(label="Generated Image")
],
title="Tamil to English Translator & Image Generator",
description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text."
)
# Launch the Gradio app
interface.launch()