import streamlit as st from PIL import Image import numpy as np from keras.models import load_model import tensorflow as tf @st.cache_resource def load_model(): model=tf.keras.models.load_model('mymodel2.h5') return model with st.spinner('Model is being loaded..'): model=load_model() with open('style.css') as f: st.markdown(f'', unsafe_allow_html=True) file = st.file_uploader('Please Upload an image',type=["jpg", "png", "jpeg", "webm"],) import cv2 from PIL import Image, ImageOps from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np st.set_option('deprecation.showfileUploaderEncoding', False) def import_and_predict(image_data, model): size = (224,224) image = ImageOps.fit(image_data, size) img = np.asarray(image) img=img/255 img=np.expand_dims(img,[0]) prediction = model.predict(img) return prediction if file is None: pass else: image = Image.open(file) image = image.convert("RGB") st.image(image, use_column_width=True) try: predictions = import_and_predict(image, model) score = tf.nn.softmax(predictions[0]) predictions = np.argmax(predictions, axis = 1) if(predictions == 0): st.write('

The image is most likely an AI Generated Image

', unsafe_allow_html=True) else: st.write('

The image is most likely a Real Image

', unsafe_allow_html=True) except Exception as e: st.write(f'An error occurred during prediction')