Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
from keras.models import load_model | |
import tensorflow as tf | |
def load_model(): | |
model=tf.keras.models.load_model('mymodel2.h5') | |
return model | |
with st.spinner('Model is being loaded..'): | |
model=load_model() | |
with open('style.css') as f: | |
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
file = st.file_uploader('Please Upload an image',type=["jpg", "png", "jpeg", "webm"],) | |
import cv2 | |
from PIL import Image, ImageOps | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
def import_and_predict(image_data, model): | |
size = (224,224) | |
image = ImageOps.fit(image_data, size) | |
img = np.asarray(image) | |
img=img/255 | |
img=np.expand_dims(img,[0]) | |
prediction = model.predict(img) | |
return prediction | |
if file is None: | |
pass | |
else: | |
image = Image.open(file) | |
image = image.convert("RGB") | |
st.image(image, use_column_width=True) | |
try: | |
predictions = import_and_predict(image, model) | |
score = tf.nn.softmax(predictions[0]) | |
predictions = np.argmax(predictions, axis = 1) | |
if(predictions == 0): | |
st.write('<p class = "prediction">The image is most likely an AI Generated Image</p>', unsafe_allow_html=True) | |
else: | |
st.write('<p class = "prediction">The image is most likely a Real Image</p>', unsafe_allow_html=True) | |
except Exception as e: | |
st.write(f'An error occurred during prediction') |