Spaces:
Build error
Build error
Update skyreelsinfer/offload.py
Browse files- skyreelsinfer/offload.py +519 -515
skyreelsinfer/offload.py
CHANGED
|
@@ -1,515 +1,519 @@
|
|
| 1 |
-
import functools
|
| 2 |
-
import gc
|
| 3 |
-
import os
|
| 4 |
-
import time
|
| 5 |
-
from dataclasses import dataclass
|
| 6 |
-
|
| 7 |
-
import torch
|
| 8 |
-
from diffusers.pipelines import DiffusionPipeline
|
| 9 |
-
from torchao.dtypes.affine_quantized_tensor import AffineQuantizedTensor
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
@dataclass
|
| 13 |
-
class OffloadConfig:
|
| 14 |
-
# high_cpu_memory: Whether to use pinned memory for offload optimization. This can effectively prevent increased model offload latency caused by memory swapping.
|
| 15 |
-
high_cpu_memory: bool = True
|
| 16 |
-
# parameters_level: Whether to enable parameter-level offload. This further reduces VRAM requirements but may result in increased latency.
|
| 17 |
-
parameters_level: bool = False
|
| 18 |
-
# compiler_transformer: Whether to enable compilation optimization for the transformer.
|
| 19 |
-
compiler_transformer: bool = False
|
| 20 |
-
compiler_cache: str = "/tmp/compile_cache"
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
class HfHook:
|
| 24 |
-
def __init__(self):
|
| 25 |
-
device_id = os.environ.get("LOCAL_RANK", 0)
|
| 26 |
-
self.execution_device = f"cuda:{device_id}"
|
| 27 |
-
|
| 28 |
-
def detach_hook(self, module):
|
| 29 |
-
pass
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
class Offload:
|
| 33 |
-
def __init__(self) -> None:
|
| 34 |
-
self.active_models = []
|
| 35 |
-
self.active_models_ids = []
|
| 36 |
-
self.active_subcaches = {}
|
| 37 |
-
self.models = {}
|
| 38 |
-
self.verboseLevel = 0
|
| 39 |
-
self.models_to_quantize = []
|
| 40 |
-
self.pinned_modules_data = {}
|
| 41 |
-
self.blocks_of_modules = {}
|
| 42 |
-
self.blocks_of_modules_sizes = {}
|
| 43 |
-
self.compile = False
|
| 44 |
-
self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
|
| 45 |
-
self.last_reserved_mem_check = 0
|
| 46 |
-
self.loaded_blocks = {}
|
| 47 |
-
self.prev_blocks_names = {}
|
| 48 |
-
self.next_blocks_names = {}
|
| 49 |
-
device_id = os.environ.get("LOCAL_RANK", 0)
|
| 50 |
-
self.device_id = f"cuda:{device_id}"
|
| 51 |
-
self.default_stream = torch.cuda.default_stream(self.device_id) # torch.cuda.current_stream()
|
| 52 |
-
self.transfer_stream = torch.cuda.Stream()
|
| 53 |
-
self.async_transfers = False
|
| 54 |
-
self.last_run_model = None
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
"""
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
pipeline.
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
pipe.text_encoder.to("
|
| 102 |
-
pipe.text_encoder_2.to("
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
if modelPinned:
|
| 131 |
-
p.tensor_impl.
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
buffer.data
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
if
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
#
|
| 170 |
-
#
|
| 171 |
-
#
|
| 172 |
-
#
|
| 173 |
-
#
|
| 174 |
-
#
|
| 175 |
-
#
|
| 176 |
-
#
|
| 177 |
-
#
|
| 178 |
-
#
|
| 179 |
-
#
|
| 180 |
-
|
| 181 |
-
#
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
if
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
else
|
| 243 |
-
|
| 244 |
-
self.blocks_of_modules[entry_name]
|
| 245 |
-
blocks_params_size =
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
if
|
| 318 |
-
cpu_to_gpu(
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
p.
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
self.
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
self.
|
| 383 |
-
self.
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
if
|
| 413 |
-
return
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
if
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import gc
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers.pipelines import DiffusionPipeline
|
| 9 |
+
from torchao.dtypes.affine_quantized_tensor import AffineQuantizedTensor
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class OffloadConfig:
|
| 14 |
+
# high_cpu_memory: Whether to use pinned memory for offload optimization. This can effectively prevent increased model offload latency caused by memory swapping.
|
| 15 |
+
high_cpu_memory: bool = True
|
| 16 |
+
# parameters_level: Whether to enable parameter-level offload. This further reduces VRAM requirements but may result in increased latency.
|
| 17 |
+
parameters_level: bool = False
|
| 18 |
+
# compiler_transformer: Whether to enable compilation optimization for the transformer.
|
| 19 |
+
compiler_transformer: bool = False
|
| 20 |
+
compiler_cache: str = "/tmp/compile_cache"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class HfHook:
|
| 24 |
+
def __init__(self):
|
| 25 |
+
device_id = os.environ.get("LOCAL_RANK", 0)
|
| 26 |
+
self.execution_device = f"cuda:{device_id}"
|
| 27 |
+
|
| 28 |
+
def detach_hook(self, module):
|
| 29 |
+
pass
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Offload:
|
| 33 |
+
def __init__(self) -> None:
|
| 34 |
+
self.active_models = []
|
| 35 |
+
self.active_models_ids = []
|
| 36 |
+
self.active_subcaches = {}
|
| 37 |
+
self.models = {}
|
| 38 |
+
self.verboseLevel = 0
|
| 39 |
+
self.models_to_quantize = []
|
| 40 |
+
self.pinned_modules_data = {}
|
| 41 |
+
self.blocks_of_modules = {}
|
| 42 |
+
self.blocks_of_modules_sizes = {}
|
| 43 |
+
self.compile = False
|
| 44 |
+
self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
|
| 45 |
+
self.last_reserved_mem_check = 0
|
| 46 |
+
self.loaded_blocks = {}
|
| 47 |
+
self.prev_blocks_names = {}
|
| 48 |
+
self.next_blocks_names = {}
|
| 49 |
+
device_id = os.environ.get("LOCAL_RANK", 0)
|
| 50 |
+
self.device_id = f"cuda:{device_id}"
|
| 51 |
+
self.default_stream = torch.cuda.default_stream(self.device_id) # torch.cuda.current_stream()
|
| 52 |
+
self.transfer_stream = torch.cuda.Stream()
|
| 53 |
+
self.async_transfers = False
|
| 54 |
+
self.last_run_model = None
|
| 55 |
+
|
| 56 |
+
def check_empty_cuda_cache(self): # Now a method of Offload
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
torch.cuda.empty_cache()
|
| 59 |
+
|
| 60 |
+
@classmethod
|
| 61 |
+
def offload(cls, pipeline: DiffusionPipeline, config: OffloadConfig = OffloadConfig()):
|
| 62 |
+
"""
|
| 63 |
+
Enable offloading for multiple models in the pipeline, supporting video generation inference on user-level GPUs.
|
| 64 |
+
pipe: the pipeline object
|
| 65 |
+
config: offload strategy configuration
|
| 66 |
+
"""
|
| 67 |
+
self = cls()
|
| 68 |
+
self.pinned_modules_data = {}
|
| 69 |
+
if config.parameters_level:
|
| 70 |
+
model_budgets = {
|
| 71 |
+
"transformer": 600 * 1024 * 1024,
|
| 72 |
+
"text_encoder": 3 * 1024 * 1024 * 1024,
|
| 73 |
+
"text_encoder_2": 3 * 1024 * 1024 * 1024,
|
| 74 |
+
}
|
| 75 |
+
self.async_transfers = True
|
| 76 |
+
else:
|
| 77 |
+
model_budgets = {}
|
| 78 |
+
|
| 79 |
+
device_id = os.getenv("LOCAL_RANK", 0)
|
| 80 |
+
torch.set_default_device(f"cuda:{device_id}")
|
| 81 |
+
pipeline.hf_device_map = torch.device(f"cuda:{device_id}")
|
| 82 |
+
pipe_or_dict_of_modules = pipeline.components
|
| 83 |
+
if config.compiler_transformer:
|
| 84 |
+
pipeline.transformer.to("cuda")
|
| 85 |
+
models = {
|
| 86 |
+
k: v
|
| 87 |
+
for k, v in pipe_or_dict_of_modules.items()
|
| 88 |
+
if isinstance(v, torch.nn.Module) and not (config.compiler_transformer and k == "transformer")
|
| 89 |
+
}
|
| 90 |
+
print_info = {k: type(v) for k, v in models.items()}
|
| 91 |
+
print(f"offload models: {print_info}")
|
| 92 |
+
if config.compiler_transformer:
|
| 93 |
+
pipeline.text_encoder.to("cpu")
|
| 94 |
+
pipeline.text_encoder_2.to("cpu")
|
| 95 |
+
torch.cuda.empty_cache()
|
| 96 |
+
pipeline.transformer.to("cuda")
|
| 97 |
+
pipeline.vae.to("cuda")
|
| 98 |
+
|
| 99 |
+
def move_text_encoder_to_gpu(pipe):
|
| 100 |
+
torch.cuda.empty_cache()
|
| 101 |
+
pipe.text_encoder.to("cuda")
|
| 102 |
+
pipe.text_encoder_2.to("cuda")
|
| 103 |
+
|
| 104 |
+
def move_text_encoder_to_cpu(pipe):
|
| 105 |
+
pipe.text_encoder.to("cpu")
|
| 106 |
+
pipe.text_encoder_2.to("cpu")
|
| 107 |
+
torch.cuda.empty_cache()
|
| 108 |
+
|
| 109 |
+
setattr(pipeline, "text_encoder_to_cpu", functools.partial(move_text_encoder_to_cpu, pipeline))
|
| 110 |
+
setattr(pipeline, "text_encoder_to_gpu", functools.partial(move_text_encoder_to_gpu, pipeline))
|
| 111 |
+
|
| 112 |
+
for k, module in pipe_or_dict_of_modules.items():
|
| 113 |
+
if isinstance(module, torch.nn.Module):
|
| 114 |
+
for submodule_name, submodule in module.named_modules():
|
| 115 |
+
if not hasattr(submodule, "_hf_hook"):
|
| 116 |
+
setattr(submodule, "_hf_hook", HfHook())
|
| 117 |
+
return self
|
| 118 |
+
|
| 119 |
+
sizeofbfloat16 = torch.bfloat16.itemsize
|
| 120 |
+
modelPinned = config.high_cpu_memory
|
| 121 |
+
# Pin in RAM models
|
| 122 |
+
# Calculate the VRAM requirements of the computational modules to determine whether parameters-level offload is necessary.
|
| 123 |
+
for model_name, curr_model in models.items():
|
| 124 |
+
curr_model.to("cpu").eval()
|
| 125 |
+
pinned_parameters_data = {}
|
| 126 |
+
current_model_size = 0
|
| 127 |
+
print(f"{model_name} move to pinned memory:{modelPinned}")
|
| 128 |
+
for p in curr_model.parameters():
|
| 129 |
+
if isinstance(p, AffineQuantizedTensor):
|
| 130 |
+
if not modelPinned and p.tensor_impl.scale.dtype == torch.float32:
|
| 131 |
+
p.tensor_impl.scale = p.tensor_impl.scale.to(torch.bfloat16)
|
| 132 |
+
current_model_size += torch.numel(p.tensor_impl.scale) * sizeofbfloat16
|
| 133 |
+
current_model_size += torch.numel(p.tensor_impl.float8_data) * sizeofbfloat16 / 2
|
| 134 |
+
if modelPinned:
|
| 135 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.pin_memory()
|
| 136 |
+
p.tensor_impl.scale = p.tensor_impl.scale.pin_memory()
|
| 137 |
+
pinned_parameters_data[p] = [p.tensor_impl.float8_data, p.tensor_impl.scale]
|
| 138 |
+
else:
|
| 139 |
+
p.data = p.data.to(torch.bfloat16) if p.data.dtype == torch.float32 else p.data.to(p.data.dtype)
|
| 140 |
+
current_model_size += torch.numel(p.data) * p.data.element_size()
|
| 141 |
+
if modelPinned:
|
| 142 |
+
p.data = p.data.pin_memory()
|
| 143 |
+
pinned_parameters_data[p] = p.data
|
| 144 |
+
|
| 145 |
+
for buffer in curr_model.buffers():
|
| 146 |
+
buffer.data = (
|
| 147 |
+
buffer.data.to(torch.bfloat16)
|
| 148 |
+
if buffer.data.dtype == torch.float32
|
| 149 |
+
else buffer.data.to(buffer.data.dtype)
|
| 150 |
+
)
|
| 151 |
+
current_model_size += torch.numel(buffer.data) * buffer.data.element_size()
|
| 152 |
+
if modelPinned:
|
| 153 |
+
buffer.data = buffer.data.pin_memory()
|
| 154 |
+
|
| 155 |
+
if model_name not in self.models:
|
| 156 |
+
self.models[model_name] = curr_model
|
| 157 |
+
|
| 158 |
+
curr_model_budget = model_budgets.get(model_name, 0)
|
| 159 |
+
if curr_model_budget > 0 and curr_model_budget > current_model_size:
|
| 160 |
+
model_budgets[model_name] = 0
|
| 161 |
+
|
| 162 |
+
if modelPinned:
|
| 163 |
+
pinned_buffers_data = {b: b.data for b in curr_model.buffers()}
|
| 164 |
+
pinned_parameters_data.update(pinned_buffers_data)
|
| 165 |
+
self.pinned_modules_data[model_name] = pinned_parameters_data
|
| 166 |
+
gc.collect()
|
| 167 |
+
torch.cuda.empty_cache()
|
| 168 |
+
|
| 169 |
+
# if config.compiler_transformer:
|
| 170 |
+
# module = pipeline.transformer
|
| 171 |
+
# print("wrap transformer forward")
|
| 172 |
+
# # gpu model wrap
|
| 173 |
+
# for submodule_name, submodule in module.named_modules():
|
| 174 |
+
# if not hasattr(submodule, "_hf_hook"):
|
| 175 |
+
# setattr(submodule, "_hf_hook", HfHook())
|
| 176 |
+
#
|
| 177 |
+
# forward_method = getattr(module, "forward")
|
| 178 |
+
#
|
| 179 |
+
# def wrap_unload_all(*args, **kwargs):
|
| 180 |
+
# self.unload_all("transformer")
|
| 181 |
+
# return forward_method(*args, **kwargs)
|
| 182 |
+
#
|
| 183 |
+
# setattr(module, "forward", functools.update_wrapper(wrap_unload_all, forward_method))
|
| 184 |
+
|
| 185 |
+
# wrap forward methods
|
| 186 |
+
for model_name, curr_model in models.items():
|
| 187 |
+
current_budget = model_budgets.get(model_name, 0)
|
| 188 |
+
current_size = 0
|
| 189 |
+
self.loaded_blocks[model_name] = None
|
| 190 |
+
cur_blocks_prefix, prev_blocks_name, cur_blocks_name, cur_blocks_seq = None, None, None, -1
|
| 191 |
+
|
| 192 |
+
for submodule_name, submodule in curr_model.named_modules():
|
| 193 |
+
# create a fake accelerate parameter so that the _execution_device property returns always "cuda"
|
| 194 |
+
if not hasattr(submodule, "_hf_hook"):
|
| 195 |
+
setattr(submodule, "_hf_hook", HfHook())
|
| 196 |
+
|
| 197 |
+
if not submodule_name:
|
| 198 |
+
continue
|
| 199 |
+
|
| 200 |
+
# usr parameters-level offload
|
| 201 |
+
if current_budget > 0:
|
| 202 |
+
if isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
|
| 203 |
+
if cur_blocks_prefix == None:
|
| 204 |
+
cur_blocks_prefix = submodule_name + "."
|
| 205 |
+
else:
|
| 206 |
+
if not submodule_name.startswith(cur_blocks_prefix):
|
| 207 |
+
cur_blocks_prefix = submodule_name + "."
|
| 208 |
+
cur_blocks_name, cur_blocks_seq = None, -1
|
| 209 |
+
else:
|
| 210 |
+
if cur_blocks_prefix is not None:
|
| 211 |
+
if submodule_name.startswith(cur_blocks_prefix):
|
| 212 |
+
num = int(submodule_name[len(cur_blocks_prefix) :].split(".")[0])
|
| 213 |
+
if num != cur_blocks_seq and (cur_blocks_name == None or current_size > current_budget):
|
| 214 |
+
prev_blocks_name = cur_blocks_name
|
| 215 |
+
cur_blocks_name = cur_blocks_prefix + str(num)
|
| 216 |
+
cur_blocks_seq = num
|
| 217 |
+
else:
|
| 218 |
+
cur_blocks_prefix = None
|
| 219 |
+
prev_blocks_name = None
|
| 220 |
+
cur_blocks_name = None
|
| 221 |
+
cur_blocks_seq = -1
|
| 222 |
+
|
| 223 |
+
if hasattr(submodule, "forward"):
|
| 224 |
+
submodule_forward = getattr(submodule, "forward")
|
| 225 |
+
if not callable(submodule_forward):
|
| 226 |
+
print("***")
|
| 227 |
+
continue
|
| 228 |
+
if len(submodule_name.split(".")) == 1:
|
| 229 |
+
self.hook_me(submodule, curr_model, model_name, submodule_name, submodule_forward)
|
| 230 |
+
else:
|
| 231 |
+
self.hook_me_light(
|
| 232 |
+
submodule, model_name, cur_blocks_name, submodule_forward, context=submodule_name
|
| 233 |
+
)
|
| 234 |
+
current_size = self.add_module_to_blocks(model_name, cur_blocks_name, submodule, prev_blocks_name)
|
| 235 |
+
|
| 236 |
+
gc.collect()
|
| 237 |
+
torch.cuda.empty_cache()
|
| 238 |
+
return self
|
| 239 |
+
|
| 240 |
+
def add_module_to_blocks(self, model_name, blocks_name, submodule, prev_block_name):
|
| 241 |
+
|
| 242 |
+
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
| 243 |
+
if entry_name in self.blocks_of_modules:
|
| 244 |
+
blocks_params = self.blocks_of_modules[entry_name]
|
| 245 |
+
blocks_params_size = self.blocks_of_modules_sizes[entry_name]
|
| 246 |
+
else:
|
| 247 |
+
blocks_params = []
|
| 248 |
+
self.blocks_of_modules[entry_name] = blocks_params
|
| 249 |
+
blocks_params_size = 0
|
| 250 |
+
if blocks_name != None:
|
| 251 |
+
prev_entry_name = None if prev_block_name == None else model_name + "/" + prev_block_name
|
| 252 |
+
self.prev_blocks_names[entry_name] = prev_entry_name
|
| 253 |
+
if not prev_block_name == None:
|
| 254 |
+
self.next_blocks_names[prev_entry_name] = entry_name
|
| 255 |
+
|
| 256 |
+
for p in submodule.parameters(recurse=False):
|
| 257 |
+
blocks_params.append(p)
|
| 258 |
+
if isinstance(p, AffineQuantizedTensor):
|
| 259 |
+
blocks_params_size += p.tensor_impl.float8_data.nbytes
|
| 260 |
+
blocks_params_size += p.tensor_impl.scale.nbytes
|
| 261 |
+
else:
|
| 262 |
+
blocks_params_size += p.data.nbytes
|
| 263 |
+
|
| 264 |
+
for p in submodule.buffers(recurse=False):
|
| 265 |
+
blocks_params.append(p)
|
| 266 |
+
blocks_params_size += p.data.nbytes
|
| 267 |
+
|
| 268 |
+
self.blocks_of_modules_sizes[entry_name] = blocks_params_size
|
| 269 |
+
|
| 270 |
+
return blocks_params_size
|
| 271 |
+
|
| 272 |
+
def can_model_be_cotenant(self, model_name):
|
| 273 |
+
cotenants_map = {
|
| 274 |
+
"text_encoder": ["vae", "text_encoder_2"],
|
| 275 |
+
"text_encoder_2": ["vae", "text_encoder"],
|
| 276 |
+
}
|
| 277 |
+
potential_cotenants = cotenants_map.get(model_name, None)
|
| 278 |
+
if potential_cotenants is None:
|
| 279 |
+
return False
|
| 280 |
+
for existing_cotenant in self.active_models_ids:
|
| 281 |
+
if existing_cotenant not in potential_cotenants:
|
| 282 |
+
return False
|
| 283 |
+
return True
|
| 284 |
+
|
| 285 |
+
@torch.compiler.disable()
|
| 286 |
+
def gpu_load_blocks(self, model_name, blocks_name, async_load=False):
|
| 287 |
+
if blocks_name != None:
|
| 288 |
+
self.loaded_blocks[model_name] = blocks_name
|
| 289 |
+
|
| 290 |
+
def cpu_to_gpu(stream_to_use, blocks_params, record_for_stream=None):
|
| 291 |
+
with torch.cuda.stream(stream_to_use):
|
| 292 |
+
for p in blocks_params:
|
| 293 |
+
if isinstance(p, AffineQuantizedTensor):
|
| 294 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cuda(
|
| 295 |
+
non_blocking=True, device=self.device_id
|
| 296 |
+
)
|
| 297 |
+
p.tensor_impl.scale = p.tensor_impl.scale.cuda(non_blocking=True, device=self.device_id)
|
| 298 |
+
else:
|
| 299 |
+
p.data = p.data.cuda(non_blocking=True, device=self.device_id)
|
| 300 |
+
|
| 301 |
+
if record_for_stream != None:
|
| 302 |
+
if isinstance(p, AffineQuantizedTensor):
|
| 303 |
+
p.tensor_impl.float8_data.record_stream(record_for_stream)
|
| 304 |
+
p.tensor_impl.scale.record_stream(record_for_stream)
|
| 305 |
+
else:
|
| 306 |
+
p.data.record_stream(record_for_stream)
|
| 307 |
+
|
| 308 |
+
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
| 309 |
+
if self.verboseLevel >= 2:
|
| 310 |
+
model = self.models[model_name]
|
| 311 |
+
model_name = model._get_name()
|
| 312 |
+
print(f"Loading model {entry_name} ({model_name}) in GPU")
|
| 313 |
+
|
| 314 |
+
if self.async_transfers and blocks_name != None:
|
| 315 |
+
first = self.prev_blocks_names[entry_name] == None
|
| 316 |
+
next_blocks_entry = self.next_blocks_names[entry_name] if entry_name in self.next_blocks_names else None
|
| 317 |
+
if first:
|
| 318 |
+
cpu_to_gpu(torch.cuda.current_stream(), self.blocks_of_modules[entry_name])
|
| 319 |
+
torch.cuda.synchronize()
|
| 320 |
+
|
| 321 |
+
if next_blocks_entry != None:
|
| 322 |
+
cpu_to_gpu(self.transfer_stream, self.blocks_of_modules[next_blocks_entry])
|
| 323 |
+
|
| 324 |
+
else:
|
| 325 |
+
cpu_to_gpu(self.default_stream, self.blocks_of_modules[entry_name])
|
| 326 |
+
torch.cuda.synchronize()
|
| 327 |
+
|
| 328 |
+
@torch.compiler.disable()
|
| 329 |
+
def gpu_unload_blocks(self, model_name, blocks_name):
|
| 330 |
+
if blocks_name != None:
|
| 331 |
+
self.loaded_blocks[model_name] = None
|
| 332 |
+
|
| 333 |
+
blocks_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
| 334 |
+
|
| 335 |
+
if self.verboseLevel >= 2:
|
| 336 |
+
model = self.models[model_name]
|
| 337 |
+
model_name = model._get_name()
|
| 338 |
+
print(f"Unloading model {blocks_name} ({model_name}) from GPU")
|
| 339 |
+
|
| 340 |
+
blocks_params = self.blocks_of_modules[blocks_name]
|
| 341 |
+
|
| 342 |
+
if model_name in self.pinned_modules_data:
|
| 343 |
+
pinned_parameters_data = self.pinned_modules_data[model_name]
|
| 344 |
+
for p in blocks_params:
|
| 345 |
+
if isinstance(p, AffineQuantizedTensor):
|
| 346 |
+
data = pinned_parameters_data[p]
|
| 347 |
+
p.tensor_impl.float8_data = data[0]
|
| 348 |
+
p.tensor_impl.scale = data[1]
|
| 349 |
+
else:
|
| 350 |
+
p.data = pinned_parameters_data[p]
|
| 351 |
+
else:
|
| 352 |
+
for p in blocks_params:
|
| 353 |
+
if isinstance(p, AffineQuantizedTensor):
|
| 354 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cpu()
|
| 355 |
+
p.tensor_impl.scale = p.tensor_impl.scale.cpu()
|
| 356 |
+
else:
|
| 357 |
+
p.data = p.data.cpu()
|
| 358 |
+
|
| 359 |
+
@torch.compiler.disable()
|
| 360 |
+
def gpu_load(self, model_name):
|
| 361 |
+
model = self.models[model_name]
|
| 362 |
+
self.active_models.append(model)
|
| 363 |
+
self.active_models_ids.append(model_name)
|
| 364 |
+
|
| 365 |
+
self.gpu_load_blocks(model_name, None)
|
| 366 |
+
|
| 367 |
+
# torch.cuda.current_stream().synchronize()
|
| 368 |
+
|
| 369 |
+
@torch.compiler.disable()
|
| 370 |
+
def unload_all(self, model_name: str):
|
| 371 |
+
if len(self.active_models_ids) == 0 and self.last_run_model == model_name:
|
| 372 |
+
self.last_run_model = model_name
|
| 373 |
+
return
|
| 374 |
+
for model_name in self.active_models_ids:
|
| 375 |
+
self.gpu_unload_blocks(model_name, None)
|
| 376 |
+
loaded_block = self.loaded_blocks[model_name]
|
| 377 |
+
if loaded_block != None:
|
| 378 |
+
self.gpu_unload_blocks(model_name, loaded_block)
|
| 379 |
+
self.loaded_blocks[model_name] = None
|
| 380 |
+
|
| 381 |
+
self.active_models = []
|
| 382 |
+
self.active_models_ids = []
|
| 383 |
+
self.active_subcaches = []
|
| 384 |
+
torch.cuda.empty_cache()
|
| 385 |
+
gc.collect()
|
| 386 |
+
self.last_reserved_mem_check = time.time()
|
| 387 |
+
self.last_run_model = model_name
|
| 388 |
+
|
| 389 |
+
def move_args_to_gpu(self, *args, **kwargs):
|
| 390 |
+
new_args = []
|
| 391 |
+
new_kwargs = {}
|
| 392 |
+
for arg in args:
|
| 393 |
+
if torch.is_tensor(arg):
|
| 394 |
+
if arg.dtype == torch.float32:
|
| 395 |
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
|
| 396 |
+
else:
|
| 397 |
+
arg = arg.cuda(non_blocking=True, device=self.device_id)
|
| 398 |
+
new_args.append(arg)
|
| 399 |
+
|
| 400 |
+
for k in kwargs:
|
| 401 |
+
arg = kwargs[k]
|
| 402 |
+
if torch.is_tensor(arg):
|
| 403 |
+
if arg.dtype == torch.float32:
|
| 404 |
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
|
| 405 |
+
else:
|
| 406 |
+
arg = arg.cuda(non_blocking=True, device=self.device_id)
|
| 407 |
+
new_kwargs[k] = arg
|
| 408 |
+
|
| 409 |
+
return new_args, new_kwargs
|
| 410 |
+
|
| 411 |
+
def ready_to_check_mem(self):
|
| 412 |
+
if self.compile:
|
| 413 |
+
return
|
| 414 |
+
cur_clock = time.time()
|
| 415 |
+
# can't check at each call if we can empty the cuda cache as quering the reserved memory value is a time consuming operation
|
| 416 |
+
if (cur_clock - self.last_reserved_mem_check) < 0.200:
|
| 417 |
+
return False
|
| 418 |
+
self.last_reserved_mem_check = cur_clock
|
| 419 |
+
return True
|
| 420 |
+
|
| 421 |
+
def empty_cache_if_needed(self):
|
| 422 |
+
mem_reserved = torch.cuda.memory_reserved()
|
| 423 |
+
mem_threshold = 0.9 * self.device_mem_capacity
|
| 424 |
+
if mem_reserved >= mem_threshold:
|
| 425 |
+
mem_allocated = torch.cuda.memory_allocated()
|
| 426 |
+
if mem_allocated <= 0.70 * mem_reserved:
|
| 427 |
+
torch.cuda.empty_cache()
|
| 428 |
+
tm = time.time()
|
| 429 |
+
if self.verboseLevel >= 2:
|
| 430 |
+
print(f"Empty Cuda cache at {tm}")
|
| 431 |
+
|
| 432 |
+
def any_param_or_buffer(self, target_module: torch.nn.Module):
|
| 433 |
+
|
| 434 |
+
for _ in target_module.parameters(recurse=False):
|
| 435 |
+
return True
|
| 436 |
+
|
| 437 |
+
for _ in target_module.buffers(recurse=False):
|
| 438 |
+
return True
|
| 439 |
+
|
| 440 |
+
return False
|
| 441 |
+
|
| 442 |
+
def hook_me_light(self, target_module, model_name, blocks_name, previous_method, context):
|
| 443 |
+
|
| 444 |
+
anyParam = self.any_param_or_buffer(target_module)
|
| 445 |
+
|
| 446 |
+
def check_empty_cuda_cache(module, *args, **kwargs):
|
| 447 |
+
if self.ready_to_check_mem():
|
| 448 |
+
self.empty_cache_if_needed()
|
| 449 |
+
return previous_method(*args, **kwargs)
|
| 450 |
+
|
| 451 |
+
def load_module_blocks(module, *args, **kwargs):
|
| 452 |
+
if blocks_name == None:
|
| 453 |
+
if self.ready_to_check_mem():
|
| 454 |
+
self.empty_cache_if_needed()
|
| 455 |
+
else:
|
| 456 |
+
loaded_block = self.loaded_blocks[model_name]
|
| 457 |
+
if loaded_block == None or loaded_block != blocks_name:
|
| 458 |
+
if loaded_block != None:
|
| 459 |
+
self.gpu_unload_blocks(model_name, loaded_block)
|
| 460 |
+
if self.ready_to_check_mem():
|
| 461 |
+
self.empty_cache_if_needed()
|
| 462 |
+
self.loaded_blocks[model_name] = blocks_name
|
| 463 |
+
self.gpu_load_blocks(model_name, blocks_name)
|
| 464 |
+
return previous_method(*args, **kwargs)
|
| 465 |
+
|
| 466 |
+
if hasattr(target_module, "_mm_id"):
|
| 467 |
+
orig_model_name = getattr(target_module, "_mm_id")
|
| 468 |
+
if self.verboseLevel >= 2:
|
| 469 |
+
print(
|
| 470 |
+
f"Model '{model_name}' shares module '{target_module._get_name()}' with module '{orig_model_name}' "
|
| 471 |
+
)
|
| 472 |
+
assert not anyParam
|
| 473 |
+
return
|
| 474 |
+
setattr(target_module, "_mm_id", model_name)
|
| 475 |
+
|
| 476 |
+
if blocks_name != None and anyParam:
|
| 477 |
+
setattr(
|
| 478 |
+
target_module,
|
| 479 |
+
"forward",
|
| 480 |
+
functools.update_wrapper(functools.partial(load_module_blocks, target_module), previous_method),
|
| 481 |
+
)
|
| 482 |
+
# print(f"new cache:{blocks_name}")
|
| 483 |
+
else:
|
| 484 |
+
setattr(
|
| 485 |
+
target_module,
|
| 486 |
+
"forward",
|
| 487 |
+
functools.update_wrapper(functools.partial(check_empty_cuda_cache, target_module), previous_method),
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
def hook_me(self, target_module, model, model_name, module_id, previous_method):
|
| 491 |
+
def check_change_module(module, *args, **kwargs):
|
| 492 |
+
performEmptyCacheTest = False
|
| 493 |
+
if not model_name in self.active_models_ids:
|
| 494 |
+
new_model_name = getattr(module, "_mm_id")
|
| 495 |
+
if not self.can_model_be_cotenant(new_model_name):
|
| 496 |
+
self.unload_all(model_name)
|
| 497 |
+
performEmptyCacheTest = False
|
| 498 |
+
self.gpu_load(new_model_name)
|
| 499 |
+
args, kwargs = self.move_args_to_gpu(*args, **kwargs)
|
| 500 |
+
if performEmptyCacheTest:
|
| 501 |
+
self.empty_cache_if_needed()
|
| 502 |
+
return previous_method(*args, **kwargs)
|
| 503 |
+
|
| 504 |
+
if hasattr(target_module, "_mm_id"):
|
| 505 |
+
return
|
| 506 |
+
setattr(target_module, "_mm_id", model_name)
|
| 507 |
+
|
| 508 |
+
setattr(
|
| 509 |
+
target_module,
|
| 510 |
+
"forward",
|
| 511 |
+
functools.update_wrapper(functools.partial(check_change_module, target_module), previous_method),
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
if not self.verboseLevel >= 1:
|
| 515 |
+
return
|
| 516 |
+
|
| 517 |
+
if module_id == None or module_id == "":
|
| 518 |
+
model_name = model._get_name()
|
| 519 |
+
print(f"Hooked in model '{model_name}' ({model_name})")
|