Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,10 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
import sys
|
| 4 |
-
import time
|
| 5 |
import os
|
|
|
|
| 6 |
import random
|
| 7 |
|
| 8 |
-
sys.path.append(".") # Correct path for Hugging Face Space
|
| 9 |
-
from skyreelsinfer import TaskType
|
| 10 |
-
from skyreelsinfer.offload import OffloadConfig
|
| 11 |
-
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
| 12 |
-
from diffusers.utils import export_to_video
|
| 13 |
-
from diffusers.utils import load_image
|
| 14 |
-
import torch
|
| 15 |
-
from huggingface_hub import HfApi
|
| 16 |
-
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError
|
| 17 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 18 |
|
| 19 |
-
# --- Model Loading ---
|
| 20 |
-
predictor = None
|
| 21 |
-
|
| 22 |
def get_transformer_model_id(task_type: str) -> str:
|
| 23 |
if task_type == "i2v":
|
| 24 |
return "Skywork/skyreels-v1-Hunyuan-i2v"
|
|
@@ -26,7 +12,13 @@ def get_transformer_model_id(task_type: str) -> str:
|
|
| 26 |
return "Skywork/skyreels-v1-Hunyuan-t2v"
|
| 27 |
|
| 28 |
def init_predictor(task_type: str):
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
try:
|
| 31 |
predictor = SkyReelsVideoInfer(
|
| 32 |
task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V,
|
|
@@ -36,25 +28,27 @@ def init_predictor(task_type: str):
|
|
| 36 |
offload_config=OffloadConfig(
|
| 37 |
high_cpu_memory=True,
|
| 38 |
parameters_level=True,
|
| 39 |
-
# compiler_transformer=False, # Keep this consistent
|
| 40 |
),
|
| 41 |
-
use_multiprocessing=False,
|
| 42 |
)
|
| 43 |
-
return "Model loaded successfully!"
|
| 44 |
|
| 45 |
except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e:
|
| 46 |
-
|
| 47 |
except Exception as e:
|
| 48 |
-
return f"Error loading model: {e}"
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
| 54 |
if task_type == "i2v" and not isinstance(image, str):
|
| 55 |
-
return "Error: For i2v, provide
|
| 56 |
if not isinstance(prompt, str) or not isinstance(seed, (int, float)):
|
| 57 |
-
return "Error: Invalid
|
| 58 |
|
| 59 |
if seed == -1:
|
| 60 |
random.seed(time.time())
|
|
@@ -62,68 +56,70 @@ def generate_video(prompt, seed, image=None, task_type=None):
|
|
| 62 |
|
| 63 |
kwargs = {
|
| 64 |
"prompt": prompt,
|
| 65 |
-
"height": 256,
|
| 66 |
-
"width": 256,
|
| 67 |
-
"num_frames":
|
| 68 |
-
"num_inference_steps":
|
| 69 |
"seed": int(seed),
|
| 70 |
-
"guidance_scale":
|
| 71 |
"embedded_guidance_scale": 1.0,
|
| 72 |
-
"negative_prompt": "bad quality",
|
| 73 |
"cfg_for": False,
|
| 74 |
}
|
| 75 |
|
| 76 |
if task_type == "i2v":
|
| 77 |
if image is None or not os.path.exists(image):
|
| 78 |
-
return "Error: Image not
|
| 79 |
try:
|
| 80 |
kwargs["image"] = load_image(image=image)
|
| 81 |
except Exception as e:
|
| 82 |
-
|
| 83 |
|
| 84 |
try:
|
| 85 |
if predictor is None:
|
| 86 |
-
return "Error: Model not
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
output = predictor.inference(**kwargs)
|
| 89 |
save_dir = f"./result/{task_type}"
|
| 90 |
os.makedirs(save_dir, exist_ok=True)
|
| 91 |
-
video_out_file = f"{save_dir}/{prompt[:100]
|
| 92 |
-
print(f"Generating video
|
| 93 |
-
export_to_video(
|
| 94 |
-
return
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
-
return f"Error
|
| 98 |
|
| 99 |
# --- Gradio Interface ---
|
| 100 |
with gr.Blocks() as demo:
|
| 101 |
with gr.Row():
|
| 102 |
task_type_dropdown = gr.Dropdown(
|
| 103 |
-
choices=["i2v", "t2v"], label="Task
|
| 104 |
)
|
| 105 |
load_model_button = gr.Button("Load Model")
|
| 106 |
-
model_status = gr.Textbox(label="
|
| 107 |
with gr.Row():
|
| 108 |
with gr.Column():
|
| 109 |
-
prompt = gr.Textbox(label="
|
| 110 |
-
seed = gr.Number(label="
|
| 111 |
-
image = gr.Image(label="
|
| 112 |
-
submit_button = gr.Button("Generate
|
| 113 |
with gr.Column():
|
| 114 |
-
output_video = gr.Video(label="
|
| 115 |
-
output_params = gr.Textbox(label="
|
| 116 |
|
| 117 |
load_model_button.click(
|
| 118 |
fn=init_predictor,
|
| 119 |
inputs=[task_type_dropdown],
|
| 120 |
-
outputs=[model_status]
|
| 121 |
)
|
| 122 |
|
| 123 |
submit_button.click(
|
| 124 |
fn=generate_video,
|
| 125 |
-
inputs=[prompt, seed, image, task_type_dropdown],
|
| 126 |
outputs=[output_video, output_params],
|
| 127 |
)
|
| 128 |
|
| 129 |
-
demo.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
+
import time
|
| 4 |
import random
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
def get_transformer_model_id(task_type: str) -> str:
|
| 9 |
if task_type == "i2v":
|
| 10 |
return "Skywork/skyreels-v1-Hunyuan-i2v"
|
|
|
|
| 12 |
return "Skywork/skyreels-v1-Hunyuan-t2v"
|
| 13 |
|
| 14 |
def init_predictor(task_type: str):
|
| 15 |
+
# ALL IMPORTS NOW INSIDE THIS FUNCTION
|
| 16 |
+
import torch
|
| 17 |
+
from skyreelsinfer import TaskType
|
| 18 |
+
from skyreelsinfer.offload import OffloadConfig
|
| 19 |
+
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
| 20 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError
|
| 21 |
+
|
| 22 |
try:
|
| 23 |
predictor = SkyReelsVideoInfer(
|
| 24 |
task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V,
|
|
|
|
| 28 |
offload_config=OffloadConfig(
|
| 29 |
high_cpu_memory=True,
|
| 30 |
parameters_level=True,
|
|
|
|
| 31 |
),
|
| 32 |
+
use_multiprocessing=False,
|
| 33 |
)
|
| 34 |
+
return "Model loaded successfully!", predictor # Return predictor
|
| 35 |
|
| 36 |
except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e:
|
| 37 |
+
return f"Error: Model not found. Details: {e}", None
|
| 38 |
except Exception as e:
|
| 39 |
+
return f"Error loading model: {e}", None
|
| 40 |
+
|
| 41 |
|
| 42 |
+
def generate_video(prompt, seed, image, task_type, predictor): # predictor as argument
|
| 43 |
+
# IMPORTS INSIDE THIS FUNCTION TOO
|
| 44 |
+
from diffusers.utils import export_to_video
|
| 45 |
+
from diffusers.utils import load_image
|
| 46 |
+
import os
|
| 47 |
|
| 48 |
if task_type == "i2v" and not isinstance(image, str):
|
| 49 |
+
return "Error: For i2v, provide image path.", "{}"
|
| 50 |
if not isinstance(prompt, str) or not isinstance(seed, (int, float)):
|
| 51 |
+
return "Error: Invalid inputs.", "{}"
|
| 52 |
|
| 53 |
if seed == -1:
|
| 54 |
random.seed(time.time())
|
|
|
|
| 56 |
|
| 57 |
kwargs = {
|
| 58 |
"prompt": prompt,
|
| 59 |
+
"height": 256,
|
| 60 |
+
"width": 256,
|
| 61 |
+
"num_frames": 24,
|
| 62 |
+
"num_inference_steps": 30,
|
| 63 |
"seed": int(seed),
|
| 64 |
+
"guidance_scale": 7.0,
|
| 65 |
"embedded_guidance_scale": 1.0,
|
| 66 |
+
"negative_prompt": "bad quality, blur",
|
| 67 |
"cfg_for": False,
|
| 68 |
}
|
| 69 |
|
| 70 |
if task_type == "i2v":
|
| 71 |
if image is None or not os.path.exists(image):
|
| 72 |
+
return "Error: Image not found.", "{}"
|
| 73 |
try:
|
| 74 |
kwargs["image"] = load_image(image=image)
|
| 75 |
except Exception as e:
|
| 76 |
+
return f"Error loading image: {e}", "{}"
|
| 77 |
|
| 78 |
try:
|
| 79 |
if predictor is None:
|
| 80 |
+
return "Error: Model not init.", "{}"
|
| 81 |
+
|
| 82 |
+
output = predictor.inference(kwargs)
|
| 83 |
+
frames = output
|
| 84 |
|
|
|
|
| 85 |
save_dir = f"./result/{task_type}"
|
| 86 |
os.makedirs(save_dir, exist_ok=True)
|
| 87 |
+
video_out_file = f"{save_dir}/{prompt[:100]}_{int(seed)}.mp4"
|
| 88 |
+
print(f"Generating video: {video_out_file}")
|
| 89 |
+
export_to_video(frames, video_out_file, fps=24)
|
| 90 |
+
return video_out_file, str(kwargs)
|
| 91 |
|
| 92 |
except Exception as e:
|
| 93 |
+
return f"Error: {e}", "{}"
|
| 94 |
|
| 95 |
# --- Gradio Interface ---
|
| 96 |
with gr.Blocks() as demo:
|
| 97 |
with gr.Row():
|
| 98 |
task_type_dropdown = gr.Dropdown(
|
| 99 |
+
choices=["i2v", "t2v"], label="Task", value="t2v"
|
| 100 |
)
|
| 101 |
load_model_button = gr.Button("Load Model")
|
| 102 |
+
model_status = gr.Textbox(label="Status")
|
| 103 |
with gr.Row():
|
| 104 |
with gr.Column():
|
| 105 |
+
prompt = gr.Textbox(label="Prompt")
|
| 106 |
+
seed = gr.Number(label="Seed", value=-1)
|
| 107 |
+
image = gr.Image(label="Image (i2v)", type="filepath")
|
| 108 |
+
submit_button = gr.Button("Generate")
|
| 109 |
with gr.Column():
|
| 110 |
+
output_video = gr.Video(label="Video")
|
| 111 |
+
output_params = gr.Textbox(label="Params")
|
| 112 |
|
| 113 |
load_model_button.click(
|
| 114 |
fn=init_predictor,
|
| 115 |
inputs=[task_type_dropdown],
|
| 116 |
+
outputs=[model_status, "state"], # Output to a hidden state
|
| 117 |
)
|
| 118 |
|
| 119 |
submit_button.click(
|
| 120 |
fn=generate_video,
|
| 121 |
+
inputs=[prompt, seed, image, task_type_dropdown, "state"], # Input from state
|
| 122 |
outputs=[output_video, output_params],
|
| 123 |
)
|
| 124 |
|
| 125 |
+
demo.launch()
|