Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -237,28 +237,27 @@ def generate_30(
|
|
237 |
|
238 |
# 2. Encode with the two text encoders
|
239 |
prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
|
240 |
-
pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
|
241 |
print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
|
242 |
prompt_embeds_a = prompt_embeds_a.hidden_states[-2] # Penultimate hidden state from encoder 1
|
243 |
print('encoder shape: ', prompt_embeds_a.shape)
|
244 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
245 |
-
pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder
|
246 |
-
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder
|
247 |
|
248 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
249 |
-
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder
|
250 |
print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
|
251 |
-
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder
|
252 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
253 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
254 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
255 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
256 |
|
257 |
-
|
258 |
# 3. Concatenate the embeddings
|
259 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
260 |
print('catted shape: ', prompt_embeds.shape)
|
261 |
-
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a,
|
262 |
print('catted pooled shape: ', pooled_prompt_embeds.shape)
|
263 |
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0,keepdim=True)
|
264 |
print('meaned pooled shape: ', pooled_prompt_embeds.shape)
|
@@ -274,7 +273,7 @@ def generate_30(
|
|
274 |
print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
|
275 |
pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
|
276 |
print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
|
277 |
-
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=
|
278 |
print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
|
279 |
|
280 |
options = {
|
@@ -367,24 +366,23 @@ def generate_60(
|
|
367 |
|
368 |
# 2. Encode with the two text encoders
|
369 |
prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
|
370 |
-
pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
|
371 |
print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
|
372 |
prompt_embeds_a = prompt_embeds_a.hidden_states[-2] # Penultimate hidden state from encoder 1
|
373 |
print('encoder shape: ', prompt_embeds_a.shape)
|
374 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
375 |
-
pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder
|
376 |
-
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder
|
377 |
|
378 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
379 |
-
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder
|
380 |
print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
|
381 |
-
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder
|
382 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
383 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
384 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
385 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
386 |
|
387 |
-
|
388 |
# 3. Concatenate the embeddings
|
389 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
390 |
print('catted shape: ', prompt_embeds.shape)
|
@@ -404,7 +402,7 @@ def generate_60(
|
|
404 |
print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
|
405 |
pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
|
406 |
print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
|
407 |
-
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=
|
408 |
print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
|
409 |
|
410 |
options = {
|
@@ -497,24 +495,23 @@ def generate_90(
|
|
497 |
|
498 |
# 2. Encode with the two text encoders
|
499 |
prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
|
500 |
-
pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
|
501 |
print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
|
502 |
prompt_embeds_a = prompt_embeds_a.hidden_states[-2] # Penultimate hidden state from encoder 1
|
503 |
print('encoder shape: ', prompt_embeds_a.shape)
|
504 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
505 |
-
pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder
|
506 |
-
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder
|
507 |
|
508 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
509 |
-
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder
|
510 |
print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
|
511 |
-
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder
|
512 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
513 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
514 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
515 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
516 |
|
517 |
-
|
518 |
# 3. Concatenate the embeddings
|
519 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
520 |
print('catted shape: ', prompt_embeds.shape)
|
@@ -534,7 +531,7 @@ def generate_90(
|
|
534 |
print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
|
535 |
pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
|
536 |
print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
|
537 |
-
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=
|
538 |
print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
|
539 |
|
540 |
options = {
|
|
|
237 |
|
238 |
# 2. Encode with the two text encoders
|
239 |
prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
|
240 |
+
pooled_prompt_embeds_a = prompt_embeds_a[0][:, -1, :] # Pooled output from encoder 1
|
241 |
print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
|
242 |
prompt_embeds_a = prompt_embeds_a.hidden_states[-2] # Penultimate hidden state from encoder 1
|
243 |
print('encoder shape: ', prompt_embeds_a.shape)
|
244 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
245 |
+
pooled_prompt_embeds_b = prompt_embeds_b[0][:, -1, :] # Pooled output from encoder 1
|
246 |
+
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 1
|
247 |
|
248 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
249 |
+
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 2
|
250 |
print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
|
251 |
+
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
252 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
253 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
254 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
255 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
256 |
|
|
|
257 |
# 3. Concatenate the embeddings
|
258 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
259 |
print('catted shape: ', prompt_embeds.shape)
|
260 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
|
261 |
print('catted pooled shape: ', pooled_prompt_embeds.shape)
|
262 |
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0,keepdim=True)
|
263 |
print('meaned pooled shape: ', pooled_prompt_embeds.shape)
|
|
|
273 |
print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
|
274 |
pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
|
275 |
print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
|
276 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=1)
|
277 |
print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
|
278 |
|
279 |
options = {
|
|
|
366 |
|
367 |
# 2. Encode with the two text encoders
|
368 |
prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
|
369 |
+
pooled_prompt_embeds_a = prompt_embeds_a[0][:, -1, :] # Pooled output from encoder 1
|
370 |
print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
|
371 |
prompt_embeds_a = prompt_embeds_a.hidden_states[-2] # Penultimate hidden state from encoder 1
|
372 |
print('encoder shape: ', prompt_embeds_a.shape)
|
373 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
374 |
+
pooled_prompt_embeds_b = prompt_embeds_b[0][:, -1, :] # Pooled output from encoder 1
|
375 |
+
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 1
|
376 |
|
377 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
378 |
+
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 2
|
379 |
print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
|
380 |
+
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
381 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
382 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
383 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
384 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
385 |
|
|
|
386 |
# 3. Concatenate the embeddings
|
387 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
388 |
print('catted shape: ', prompt_embeds.shape)
|
|
|
402 |
print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
|
403 |
pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
|
404 |
print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
|
405 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=1)
|
406 |
print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
|
407 |
|
408 |
options = {
|
|
|
495 |
|
496 |
# 2. Encode with the two text encoders
|
497 |
prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
|
498 |
+
pooled_prompt_embeds_a = prompt_embeds_a[0][:, -1, :] # Pooled output from encoder 1
|
499 |
print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
|
500 |
prompt_embeds_a = prompt_embeds_a.hidden_states[-2] # Penultimate hidden state from encoder 1
|
501 |
print('encoder shape: ', prompt_embeds_a.shape)
|
502 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
503 |
+
pooled_prompt_embeds_b = prompt_embeds_b[0][:, -1, :] # Pooled output from encoder 1
|
504 |
+
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 1
|
505 |
|
506 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
507 |
+
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 2
|
508 |
print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
|
509 |
+
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
510 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
511 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
512 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
513 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
514 |
|
|
|
515 |
# 3. Concatenate the embeddings
|
516 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
517 |
print('catted shape: ', prompt_embeds.shape)
|
|
|
531 |
print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
|
532 |
pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
|
533 |
print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
|
534 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=1)
|
535 |
print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
|
536 |
|
537 |
options = {
|