Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ import numpy as np
|
|
15 |
from PIL import Image
|
16 |
import torch
|
17 |
#import diffusers
|
18 |
-
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
19 |
from diffusers import EulerAncestralDiscreteScheduler
|
20 |
from typing import Tuple
|
21 |
import paramiko
|
@@ -86,6 +86,7 @@ os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
|
|
86 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
87 |
|
88 |
def load_and_prepare_model():
|
|
|
89 |
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True, token=True)
|
90 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
91 |
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
@@ -100,6 +101,7 @@ def load_and_prepare_model():
|
|
100 |
add_watermarker=False,
|
101 |
#text_encoder=None,
|
102 |
#text_encoder_2=None,
|
|
|
103 |
vae=None,
|
104 |
)
|
105 |
#pipe.vae = vaeXL #.to(torch.bfloat16)
|
@@ -122,8 +124,8 @@ def load_and_prepare_model():
|
|
122 |
|
123 |
pipe = load_and_prepare_model()
|
124 |
|
125 |
-
text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True)#.to(device=device, dtype=torch.bfloat16)
|
126 |
-
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
|
127 |
|
128 |
MAX_SEED = np.iinfo(np.int32).max
|
129 |
|
|
|
15 |
from PIL import Image
|
16 |
import torch
|
17 |
#import diffusers
|
18 |
+
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
|
19 |
from diffusers import EulerAncestralDiscreteScheduler
|
20 |
from typing import Tuple
|
21 |
import paramiko
|
|
|
86 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
87 |
|
88 |
def load_and_prepare_model():
|
89 |
+
unet = UNet2DConditionModel.from_pretrained("ford442/RealVisXL_V5.0_BF16", low_cpu_mem_usage=False, subfolder='unet', upcast_attention=True, attention_type='gated-text-image', token=True)
|
90 |
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True, token=True)
|
91 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
92 |
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
|
|
101 |
add_watermarker=False,
|
102 |
#text_encoder=None,
|
103 |
#text_encoder_2=None,
|
104 |
+
unet=unet,
|
105 |
vae=None,
|
106 |
)
|
107 |
#pipe.vae = vaeXL #.to(torch.bfloat16)
|
|
|
124 |
|
125 |
pipe = load_and_prepare_model()
|
126 |
|
127 |
+
text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder',token=True)#.to(device=device, dtype=torch.bfloat16)
|
128 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
|
129 |
|
130 |
MAX_SEED = np.iinfo(np.int32).max
|
131 |
|