File size: 33,407 Bytes
d3eafc5
 
 
 
 
 
7bb3c7f
b7d819f
d3eafc5
 
 
 
 
 
 
894158a
3e16887
26a6884
d3eafc5
a9ca915
 
26a6884
12d4f76
3bbe93c
a9ca915
 
 
 
 
49dfb30
894158a
 
a9ca915
 
 
 
2b79c0f
a9ca915
d3eafc5
 
ff799c8
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
ebf45e8
e582867
a9ca915
925e298
fc02b93
9d03fc2
3e16887
9354849
63fb90c
092ebb6
ee7d909
c3b6a89
d7343f7
c5bb5c6
be88b26
18e0122
a9ca915
c9d0c5b
d3eafc5
52b3593
 
3e16887
b42e753
a9ca915
9508e95
1918ae9
0c86826
 
0d9553f
 
b3dd2ff
a9ca915
 
c3b6a89
a5def4e
 
0d9553f
0cd7870
 
b42e753
9680d6b
d3eafc5
0d68287
c3b6a89
a41a9cf
3e16887
 
1573efb
6c52595
d3eafc5
a9ca915
 
 
 
 
40fcec0
8cc70a1
40fcec0
 
a9ca915
 
 
 
 
 
 
 
925e298
 
 
 
 
 
 
 
6ebd597
 
 
d3eafc5
a9ca915
d3eafc5
 
3b480cb
ff799c8
bb1d03c
ff799c8
bb1d03c
 
 
 
 
b3dd2ff
bb1d03c
 
a9ca915
 
d3eafc5
5cdffe6
d3eafc5
 
a9ca915
d3eafc5
 
fd283e5
a9ca915
10c7e2c
d3eafc5
a9ca915
d3eafc5
a91770e
e773b37
0cd7870
 
5cdffe6
cd83b88
 
a532195
1573efb
5cdffe6
 
 
 
 
 
a532195
75cd14f
a532195
1573efb
5cdffe6
 
 
 
 
 
a532195
75cd14f
14948a8
a532195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14948a8
dcdfb92
d358d91
7b87899
14948a8
34f3ac2
152d8fe
d358d91
 
14948a8
a532195
d358d91
7b87899
d358d91
f69d021
a532195
 
 
 
855f65a
 
34f3ac2
d358d91
bc6ba86
024ab2e
7b87899
8a35e1b
14948a8
855f65a
34f3ac2
14948a8
a532195
f2843e0
91bf97e
a9f5158
 
 
a532195
7b87899
ba6244d
7b87899
7f69ec8
7b87899
 
a9f5158
 
 
10c7e2c
 
 
1b4088e
5cdffe6
 
3a8e322
5cdffe6
 
1b4088e
 
 
 
e773b37
1b4088e
 
 
 
a9ca915
fc02b93
3b480cb
36823d3
3b40ad0
ff799c8
36823d3
a9ca915
6cf9565
 
5b4ec73
1b4088e
a9ca915
 
 
5cdffe6
a9ca915
 
 
 
 
 
9d03fc2
10c7e2c
a9ca915
 
 
a91770e
3338fd0
0cd7870
 
5cdffe6
cd83b88
 
a532195
cea1531
5cdffe6
 
 
 
 
 
a532195
75cd14f
a532195
cea1531
5cdffe6
 
 
 
 
 
a532195
75cd14f
14948a8
a532195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14948a8
dcdfb92
d358d91
bc6ba86
14948a8
0e750cc
152d8fe
d358d91
 
14948a8
a532195
d358d91
bc6ba86
d358d91
91bf97e
a532195
 
 
 
855f65a
 
0e750cc
855f65a
bc6ba86
024ab2e
7b87899
8a35e1b
14948a8
855f65a
0e750cc
14948a8
a532195
7e206d8
91bf97e
a9f5158
 
 
a532195
7b87899
ba6244d
7b87899
7f69ec8
7b87899
 
a9f5158
 
 
10c7e2c
 
 
a9ca915
5cdffe6
 
3a8e322
5cdffe6
 
a9ca915
 
 
 
 
 
 
 
 
1b4088e
fc02b93
3b480cb
36823d3
3b40ad0
ff799c8
36823d3
a9ca915
6cf9565
 
5b4ec73
36823d3
a9ca915
 
 
5cdffe6
a9ca915
 
 
 
 
 
9d03fc2
10c7e2c
a9ca915
 
 
a91770e
3338fd0
0cd7870
 
5cdffe6
cd83b88
 
a532195
cea1531
5cdffe6
 
 
 
 
 
a532195
75cd14f
a532195
cea1531
5cdffe6
 
 
 
 
 
a532195
75cd14f
14948a8
a532195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14948a8
dcdfb92
d358d91
bc6ba86
14948a8
0e750cc
152d8fe
d358d91
 
a532195
 
d358d91
bc6ba86
d358d91
91bf97e
a532195
 
 
 
855f65a
 
0e750cc
855f65a
bc6ba86
024ab2e
7b87899
8a35e1b
14948a8
855f65a
0e750cc
14948a8
a532195
7e206d8
91bf97e
a9f5158
 
 
a532195
7b87899
ba6244d
7b87899
7f69ec8
7b87899
 
a9f5158
 
 
10c7e2c
 
 
a9ca915
5cdffe6
 
3a8e322
5cdffe6
 
a9ca915
 
 
 
 
 
 
 
 
 
fc02b93
3b480cb
36823d3
3b40ad0
ff799c8
36823d3
a9ca915
6cf9565
 
5b4ec73
1b4088e
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
 
 
 
 
 
 
 
 
 
 
 
 
d3eafc5
a9ca915
d3eafc5
 
 
 
 
 
 
 
 
5cdffe6
 
 
 
 
 
 
a9ca915
 
 
d3eafc5
 
 
9d03fc2
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
d3eafc5
 
10c7e2c
 
 
 
 
 
 
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
d3eafc5
18e0122
d3eafc5
 
 
 
a224f2b
d3eafc5
5f8ea16
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
 
 
 
 
 
5cdffe6
a9ca915
 
 
 
 
 
 
10c7e2c
a9ca915
5b4ec73
a9ca915
 
 
 
 
 
 
 
 
 
5cdffe6
a9ca915
 
 
 
 
 
 
10c7e2c
a9ca915
5b4ec73
a9ca915
 
 
 
 
d3eafc5
a9ca915
 
d3eafc5
 
5cdffe6
d3eafc5
 
 
 
 
 
 
10c7e2c
d3eafc5
5b4ec73
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3c82e
 
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces

import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
#import diffusers
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers import EulerAncestralDiscreteScheduler
from typing import Tuple
import paramiko
import datetime
#from diffusers import DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModelWithProjection, CLIPTextModel
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")

FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = "1ink.us/stable_diff/"  # Remote directory on FTP server

DESCRIPTIONXX = """
    ## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester F) ⚡⚡⚡⚡
"""

examples = [
    "Many apples splashed with drops of water within a fancy bowl 4k, hdr  --v 6.0 --style raw",
    "A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]

MODEL_OPTIONS = {
    "REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
os.environ["SAFETENSORS_FAST_GPU"] = "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
def load_and_prepare_model():
    unet = UNet2DConditionModel.from_pretrained("ford442/RealVisXL_V5.0_BF16", low_cpu_mem_usage=False, subfolder='unet', upcast_attention=True, attention_type='gated-text-image', token=True)
    #vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True, token=True)
    #vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
    vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
    #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
    #sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
    #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", token=True) #, beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True, token=True)
    #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
    pipe = StableDiffusionXLPipeline.from_pretrained(
        'ford442/RealVisXL_V5.0_BF16',
        #torch_dtype=torch.bfloat16,
        token=True,
        add_watermarker=False,
        #text_encoder=None,
        #text_encoder_2=None,
        unet=unet,
        vae=None,
    )
    #pipe.vae = vaeXL #.to(torch.bfloat16)
    #pipe.scheduler = sched
    #pipe.vae.do_resize=False
    #pipe.vae.vae_scale_factor=8
    #pipe.to(device)
    #pipe.to(torch.bfloat16)
    pipe.unet.fuse_qkv_projections()
    print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
    pipe.watermark=None
    pipe.safety_checker=None
    #pipe.unet.to(memory_format=torch.channels_last)
    #pipe.enable_vae_tiling()
    pipe.to(device=device, dtype=torch.bfloat16)
    pipe.vae = vaeXL.to(device) #.to('cpu') #.to(torch.bfloat16)
    
    pipe.unet.set_attn_processor(AttnProcessor2_0())
    pipe.vae.set_default_attn_processor()
    return pipe
    
pipe = load_and_prepare_model()

text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder',token=True)#.to(device=device, dtype=torch.bfloat16)
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)

MAX_SEED = np.iinfo(np.int32).max

neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        if filename.endswith(".txt"):
            destination_path=FTP_DIR+'/txt/'+filename
        else:
            destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative
    
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name,optimize=False,compress_level=0)
    return unique_name

def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
    filename= f'tst_F_{timestamp}.txt'
    with open(filename, "w") as f:
        f.write(f"Realvis 5.0 (Tester F) \n")
        f.write(f"Date/time: {timestamp} \n")
        f.write(f"Prompt: {prompt} \n")
        f.write(f"Steps: {num_inference_steps} \n")
        f.write(f"Guidance Scale: {guidance_scale} \n")
        f.write(f"SPACE SETUP: \n")
        f.write(f"fuse_qkv_projections  \n")
    upload_to_ftp(filename) 
    
@spaces.GPU(duration=30)
def generate_30(
    prompt: str,
    prompt2: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    txt_strength: float = 1.0,
    use_resolution_binning: bool = True, 
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
    pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)

    pooled_prompt_embeds_list=[]
    prompt_embeds_list=[]
    
    text_inputs1 = pipe.tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    
    text_input_ids1 = text_inputs1.input_ids
    
    text_inputs2 = pipe.tokenizer(
                    prompt2,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    
    text_input_ids2 = text_inputs2.input_ids

    text_inputs1b = pipe.tokenizer_2(
                    prompt,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )

    text_input_ids1b = text_inputs1b.input_ids

    text_inputs2b = pipe.tokenizer_2(
                    prompt2,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    text_input_ids2b = text_inputs2b.input_ids

    # 2. Encode with the two text encoders
    prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_a = prompt_embeds_a[0][:, -1, :]  # Pooled output from encoder 1
    print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
    prompt_embeds_a = prompt_embeds_a.hidden_states[-2]  # Penultimate hidden state from encoder 1
    print('encoder shape: ', prompt_embeds_a.shape)
    prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_b = prompt_embeds_b[0][:, -1, :]  # Pooled output from encoder 1
    prompt_embeds_b = prompt_embeds_b.hidden_states[-2]  # Penultimate hidden state from encoder 1

    prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_a2 = prompt_embeds_a2[0]  # Pooled output from encoder 2
    print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
    prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2]  # Penultimate hidden state from encoder 2
    print('encoder shape2: ', prompt_embeds_a2.shape)
    prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_b2 = prompt_embeds_b2[0]  # Pooled output from encoder 2
    prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2]  # Penultimate hidden state from encoder 2

    # 3. Concatenate the embeddings 
    prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
    print('catted shape: ', prompt_embeds.shape)
    pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
    print('catted pooled shape: ', pooled_prompt_embeds.shape)
    pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0,keepdim=True)
    print('meaned pooled shape: ', pooled_prompt_embeds.shape)

    # 4. (Optional) Average the pooled embeddings
    prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
    print('averaged shape: ', prompt_embeds.shape)

    # 3. Concatenate the text_encoder_2 embeddings 
    prompt_embeds2 = torch.cat([prompt_embeds_a2, prompt_embeds_b2])
    print('catted shape2: ', prompt_embeds2.shape)
    prompt_embeds2 = torch.mean(prompt_embeds2,dim=0,keepdim=True)
    print('averaged shape2: ', prompt_embeds.shape)

    pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
    print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
    pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
    print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
    pooled_prompt_embeds = pooled_prompt_embeds2 #torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=1)
    print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
  
    prompt_embeds = torch.cat([prompt_embeds, prompt_embeds2],dim=-1)
    print('catted combined meaned shape: ', prompt_embeds.shape)

    prompt_embeds = prompt_embeds * txt_strength
    pooled_prompt_embeds = pooled_prompt_embeds * txt_strength
    
    options = {
        #"prompt": prompt,
        "prompt_embeds": prompt_embeds,
        "pooled_prompt_embeds": pooled_prompt_embeds,
        "negative_prompt": negative_prompt,
        "negative_prompt_2": neg_prompt_2,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv50_F_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    unique_name = str(uuid.uuid4()) + ".png"  
    os.symlink(sd_image_path, unique_name)  
    return [unique_name]

@spaces.GPU(duration=60)
def generate_60(
    prompt: str,
    prompt2: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    txt_strength: float = 1.0,
    use_resolution_binning: bool = True, 
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
    pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)

    pooled_prompt_embeds_list=[]
    prompt_embeds_list=[]
    
    text_inputs1 = pipe.tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    
    text_input_ids1 = text_inputs1.input_ids
    
    text_inputs2 = pipe.tokenizer(
                    prompt2,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    
    text_input_ids2 = text_inputs2.input_ids

    text_inputs1b = pipe.tokenizer_2(
                    prompt,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )

    text_input_ids1b = text_inputs1b.input_ids

    text_inputs2b = pipe.tokenizer_2(
                    prompt2,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    text_input_ids2b = text_inputs2b.input_ids

    # 2. Encode with the two text encoders
    prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_a = prompt_embeds_a[0][:, -1, :]  # Pooled output from encoder 1
    print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
    prompt_embeds_a = prompt_embeds_a.hidden_states[-2]  # Penultimate hidden state from encoder 1
    print('encoder shape: ', prompt_embeds_a.shape)
    prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_b = prompt_embeds_b[0][:, -1, :]  # Pooled output from encoder 1
    prompt_embeds_b = prompt_embeds_b.hidden_states[-2]  # Penultimate hidden state from encoder 1

    prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_a2 = prompt_embeds_a2[0]  # Pooled output from encoder 2
    print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
    prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2]  # Penultimate hidden state from encoder 2
    print('encoder shape2: ', prompt_embeds_a2.shape)
    prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_b2 = prompt_embeds_b2[0]  # Pooled output from encoder 2
    prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2]  # Penultimate hidden state from encoder 2

    # 3. Concatenate the embeddings 
    prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
    print('catted shape: ', prompt_embeds.shape)
    pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
    print('catted pooled shape: ', pooled_prompt_embeds.shape)
    pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0,keepdim=True)
    print('meaned pooled shape: ', pooled_prompt_embeds.shape)

    # 4. (Optional) Average the pooled embeddings
    prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
    print('averaged shape: ', prompt_embeds.shape)

    # 3. Concatenate the text_encoder_2 embeddings 
    prompt_embeds2 = torch.cat([prompt_embeds_a2, prompt_embeds_b2])
    print('catted shape2: ', prompt_embeds2.shape)
    prompt_embeds2 = torch.mean(prompt_embeds2,dim=0,keepdim=True)
    print('averaged shape2: ', prompt_embeds.shape)

    pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
    print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
    pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
    print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
    pooled_prompt_embeds = pooled_prompt_embeds2 #torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=1)
    print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
  
    prompt_embeds = torch.cat([prompt_embeds, prompt_embeds2],dim=-1)
    print('catted combined meaned shape: ', prompt_embeds.shape)

    prompt_embeds = prompt_embeds * txt_strength
    pooled_prompt_embeds = pooled_prompt_embeds * txt_strength
    
    options = {
        #"prompt": prompt,
        "prompt_embeds": prompt_embeds,
        "pooled_prompt_embeds": pooled_prompt_embeds,
        "negative_prompt": negative_prompt,
        "negative_prompt_2": neg_prompt_2,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv50_F_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    unique_name = str(uuid.uuid4()) + ".png"  
    os.symlink(sd_image_path, unique_name)  
    return [unique_name]
    
@spaces.GPU(duration=90)
def generate_90(
    prompt: str,
    prompt2: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    txt_strength: float = 1.0,
    use_resolution_binning: bool = True, 
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
    pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)

    pooled_prompt_embeds_list=[]
    prompt_embeds_list=[]
    
    text_inputs1 = pipe.tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    
    text_input_ids1 = text_inputs1.input_ids
    
    text_inputs2 = pipe.tokenizer(
                    prompt2,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    
    text_input_ids2 = text_inputs2.input_ids

    text_inputs1b = pipe.tokenizer_2(
                    prompt,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )

    text_input_ids1b = text_inputs1b.input_ids

    text_inputs2b = pipe.tokenizer_2(
                    prompt2,
                    padding="max_length",
                    max_length=77,
                    truncation=True,
                    return_tensors="pt",
    )
    text_input_ids2b = text_inputs2b.input_ids

    # 2. Encode with the two text encoders
    prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_a = prompt_embeds_a[0][:, -1, :]  # Pooled output from encoder 1
    print('pooled shape 1: ', pooled_prompt_embeds_a.shape)
    prompt_embeds_a = prompt_embeds_a.hidden_states[-2]  # Penultimate hidden state from encoder 1
    print('encoder shape: ', prompt_embeds_a.shape)
    prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_b = prompt_embeds_b[0][:, -1, :]  # Pooled output from encoder 1
    prompt_embeds_b = prompt_embeds_b.hidden_states[-2]  # Penultimate hidden state from encoder 1

    prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_a2 = prompt_embeds_a2[0]  # Pooled output from encoder 2
    print('pooled shape 2: ', pooled_prompt_embeds_a2.shape)
    prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2]  # Penultimate hidden state from encoder 2
    print('encoder shape2: ', prompt_embeds_a2.shape)
    prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
    pooled_prompt_embeds_b2 = prompt_embeds_b2[0]  # Pooled output from encoder 2
    prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2]  # Penultimate hidden state from encoder 2

    # 3. Concatenate the embeddings 
    prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
    print('catted shape: ', prompt_embeds.shape)
    pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
    print('catted pooled shape: ', pooled_prompt_embeds.shape)
    pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0,keepdim=True)
    print('meaned pooled shape: ', pooled_prompt_embeds.shape)

    # 4. (Optional) Average the pooled embeddings
    prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
    print('averaged shape: ', prompt_embeds.shape)

    # 3. Concatenate the text_encoder_2 embeddings 
    prompt_embeds2 = torch.cat([prompt_embeds_a2, prompt_embeds_b2])
    print('catted shape2: ', prompt_embeds2.shape)
    prompt_embeds2 = torch.mean(prompt_embeds2,dim=0,keepdim=True)
    print('averaged shape2: ', prompt_embeds.shape)

    pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
    print('catted pooled shape 2: ', pooled_prompt_embeds2.shape)
    pooled_prompt_embeds2 = torch.mean(pooled_prompt_embeds2,dim=0,keepdim=True)
    print('pooled meaned shape 2: ', pooled_prompt_embeds2.shape)
    pooled_prompt_embeds = pooled_prompt_embeds2 #torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2],dim=1)
    print('catted combined meaned pooled shape: ', pooled_prompt_embeds.shape)
  
    prompt_embeds = torch.cat([prompt_embeds, prompt_embeds2],dim=-1)
    print('catted combined meaned shape: ', prompt_embeds.shape)

    prompt_embeds = prompt_embeds * txt_strength
    pooled_prompt_embeds = pooled_prompt_embeds * txt_strength
    
    options = {
        #"prompt": prompt,
        "prompt_embeds": prompt_embeds,
        "pooled_prompt_embeds": pooled_prompt_embeds,
        "negative_prompt": negative_prompt,
        "negative_prompt_2": neg_prompt_2,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv50_F_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    unique_name = str(uuid.uuid4()) + ".png"  
    os.symlink(sd_image_path, unique_name)  
    return [unique_name]

def load_predefined_images1():
    predefined_images1 = [
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
        "assets/1.png",
        "assets/2.png",
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
    ]
    return predefined_images1

css = '''
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
h1{text-align:center}
footer {
    visibility: hidden
}
body {
  background-color: green;
}
'''

with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
    gr.Markdown(DESCRIPTIONXX)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        prompt2 = gr.Text(
            label="Prompt 2",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button_30 = gr.Button("Run 30 Seconds", scale=0)
        run_button_60 = gr.Button("Run 60 Seconds", scale=0)
        run_button_90 = gr.Button("Run 90 Seconds", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False) 

    with gr.Row():

        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner',  'distorted face','amateur'",
                    visible=True,
                )
                text_strength = gr.Slider(
                    label="Text Strength",
                    minimum=0.0,
                    maximum=5.0,
                    step=0.01,
                    value=1.0,
                )
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=30,
                step=0.1,
                value=3.8,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=1000,
                step=10,
                value=170,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    gr.on(
        triggers=[
            run_button_30.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_30,
        inputs=[
            prompt,
            prompt2,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            text_strength,
        ],
        outputs=[result],
    )
    
    gr.on(
        triggers=[
            run_button_60.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_60,
        inputs=[
            prompt,
            prompt2,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            text_strength,
        ],
        outputs=[result],
    )
    
    gr.on(
        triggers=[
            run_button_90.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_90,
        inputs=[
            prompt,
            prompt2,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            text_strength,
        ],
        outputs=[result],
    )

    gr.Markdown("### REALVISXL V5.0")
    predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images. 
    <a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
    </div>
    """) 

def text_generation(input_text, seed):
    full_prompt = "Text Generator Application by ecarbo"
    return full_prompt
    
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"

if __name__ == "__main__":
    demo_interface = demo.queue(max_size=50)  # Remove .launch() here

    text_gen_interface = gr.Interface(
        fn=text_generation,
        inputs=[
            gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
            gr.Number(value=10, label="Enter seed number")
        ],
        outputs=gr.Textbox(label="Text Generated"),
        title=title,
        description=description,
    )

    combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
    combined_interface.launch(show_api=False)