Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,231 Bytes
e6e2e14 1f23262 f8406a5 a86abeb c2ccaee 1f23262 c2ccaee a86abeb c2ccaee e6e2e14 e011c4f 503fc45 e6e2e14 038dec8 e6e2e14 1ede5f6 503fc45 3bd0d59 ac01906 271f98b 1ede5f6 503fc45 271f98b e6e2e14 580ff26 e6e2e14 503fc45 e011c4f e6e2e14 a27d48a e6e2e14 5e8015d e6e2e14 503fc45 e011c4f e6e2e14 a27d48a e6e2e14 5e8015d e6e2e14 503fc45 e011c4f e6e2e14 a27d48a e6e2e14 5e8015d e6e2e14 503fc45 e6e2e14 503fc45 e6e2e14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import spaces
import os
import subprocess
#subprocess.run(['sh', './jax.sh'])
'''
subprocess.run(['sh', './conda.sh'])
import sys
conda_prefix = os.path.expanduser("~/miniconda3")
conda_bin = os.path.join(conda_prefix, "bin")
# Add Conda's bin directory to your PATH
os.environ["PATH"] = conda_bin + os.pathsep + os.environ["PATH"]
# Activate the base environment (adjust if needed)
os.system(f'{conda_bin}/conda init --all')
os.system(f'{conda_bin}/conda activate base')
os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
'''
import gradio as gr
import numpy as np
import paramiko
from image_gen_aux import UpscaleWithModel
import cyper
from PIL import Image
os.environ['JAX_PLATFORMS'] = 'cpu'
import random
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00"
import keras
import keras_hub
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
#torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
upscaler_2 = None # UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
text_to_image = None
@spaces.GPU(duration=60)
def load_model():
global upscaler_2
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
global text_to_image
text_to_image = keras_hub.models.StableDiffusion3TextToImage.from_preset(
"stable_diffusion_3_medium", width=768, height=768, dtype="bfloat16"
)
return text_to_image
code = r'''
import paramiko
import os
FTP_HOST = '1ink.us'
FTP_USER = 'ford442'
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = '1ink.us/stable_diff/'
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
'''
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=40)
def infer_30(
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global text_to_image
if text_to_image is None:
text_to_image = load_model()
os.environ['JAX_PLATFORMS'] = 'gpu'
os.environ['KERAS_BACKEND'] = 'jax'
seed = random.randint(0, MAX_SEED)
sd_image = text_to_image.generate(
prompt,
num_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed
)
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd3keras_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd3keras_upscale_{timestamp}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
@spaces.GPU(duration=70)
def infer_60(
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global text_to_image
if text_to_image is None:
text_to_image = load_model()
os.environ['JAX_PLATFORMS'] = 'gpu'
os.environ['KERAS_BACKEND'] = 'jax'
seed = random.randint(0, MAX_SEED)
sd_image = text_to_image.generate(
prompt,
num_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed
)
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd3keras_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd3keras_upscale_{timestamp}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
@spaces.GPU(duration=100)
def infer_90(
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global text_to_image
if text_to_image is None:
text_to_image = load_model()
os.environ['JAX_PLATFORMS'] = 'gpu'
os.environ['KERAS_BACKEND'] = 'jax'
seed = random.randint(0, MAX_SEED)
sd_image = text_to_image.generate(
prompt,
num_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed
)
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd3keras_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd3keras_upscale_{timestamp}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # StableDiffusion 3 Medium from Keras-hub")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) # Add this line
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
load_button = gr.Button("Load model", scale=0, variant="primary")
run_button_30 = gr.Button("Run 30", scale=0, variant="primary")
run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=4.2,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=500,
step=1,
value=50,
)
gr.on(
triggers=[load_button.click],
fn=load_model,
inputs=[],
outputs=[],
)
gr.on(
triggers=[run_button_30.click, prompt.submit],
fn=infer_30,
inputs=[
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_60.click, prompt.submit],
fn=infer_60,
inputs=[
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_90.click, prompt.submit],
fn=infer_90,
inputs=[
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch() |