Spaces:
Sleeping
Sleeping
| import argparse | |
| import glob | |
| import os.path | |
| import torch | |
| import torch.nn.functional as F | |
| import gradio as gr | |
| import numpy as np | |
| import onnxruntime as rt | |
| import tqdm | |
| import json | |
| from midi_synthesizer import synthesis | |
| import TMIDIX | |
| in_space = os.getenv("SYSTEM") == "spaces" | |
| providers = ['CPUExecutionProvider'] | |
| #================================================================================================= | |
| def generate( | |
| start_tokens, | |
| seq_len, | |
| max_seq_len = 2048, | |
| temperature = 0.9, | |
| verbose=True, | |
| return_prime=False, | |
| ): | |
| out = torch.LongTensor([start_tokens]) | |
| st = len(start_tokens) | |
| if verbose: | |
| print("Generating sequence of max length:", seq_len) | |
| for s in range(seq_len): | |
| x = out[:, -max_seq_len:] | |
| torch_in = x.tolist()[0] | |
| logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1] | |
| filtered_logits = logits | |
| probs = F.softmax(filtered_logits / temperature, dim=-1) | |
| sample = torch.multinomial(probs, 1) | |
| out = torch.cat((out, sample), dim=-1) | |
| if verbose: | |
| if s % 32 == 0: | |
| print(s, '/', seq_len) | |
| if return_prime: | |
| return out[:, :] | |
| else: | |
| return out[:, st:] | |
| #================================================================================================= | |
| def load_javascript(dir="javascript"): | |
| scripts_list = glob.glob(f"{dir}/*.js") | |
| javascript = "" | |
| for path in scripts_list: | |
| with open(path, "r", encoding="utf8") as jsfile: | |
| javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>" | |
| template_response_ori = gr.routes.templates.TemplateResponse | |
| def template_response(*args, **kwargs): | |
| res = template_response_ori(*args, **kwargs) | |
| res.body = res.body.replace( | |
| b'</head>', f'{javascript}</head>'.encode("utf8")) | |
| res.init_headers() | |
| return res | |
| gr.routes.templates.TemplateResponse = template_response | |
| class JSMsgReceiver(gr.HTML): | |
| def __init__(self, **kwargs): | |
| super().__init__(elem_id="msg_receiver", visible=False, **kwargs) | |
| def postprocess(self, y): | |
| if y: | |
| y = f"<p>{json.dumps(y)}</p>" | |
| return super().postprocess(y) | |
| def get_block_name(self) -> str: | |
| return "html" | |
| #================================================================================================= | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
| parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
| parser.add_argument("--max-gen", type=int, default=1024, help="max") | |
| opt = parser.parse_args() | |
| providers = ['CPUExecutionProvider'] | |
| # session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=providers) | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>") | |
| gr.Markdown("\n\n" | |
| "Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" | |
| "Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" | |
| "[Open In Colab]" | |
| "(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" | |
| " for faster execution and endless generation" | |
| ) | |
| js_msg = JSMsgReceiver() | |
| tab_select = gr.Variable(value=0) | |
| app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True) |