File size: 3,206 Bytes
cdfee38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789194e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdfee38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06a8a47
cdfee38
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr

from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation

feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "mattmdjaga/segformer_b2_clothes"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
    "mattmdjaga/segformer_b2_clothes"
)

def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [166, 166, 166],
        [255, 0, 0],
        [0, 216, 255],
        [134, 229, 127],
        [165, 102, 255],
        [229, 216, 92],
        [250, 237, 125],
        [196, 183, 59],
        [0, 0, 0],
        [0, 84, 255],
        [0, 51, 153],
        [255, 255, 255],
        [242, 150, 97],
        [153, 56, 0],
        [71, 200, 62],
        [34, 116, 28],
        [128, 65, 217],
        [255, 0, 221],
    ]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')
    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig

def sepia(input_img):
    input_img = Image.fromarray(input_img)

    inputs = feature_extractor(images=input_img, return_tensors="tf")
    outputs = model(**inputs)
    logits = outputs.logits

    logits = tf.transpose(logits, [0, 2, 3, 1])
    logits = tf.image.resize(
        logits, input_img.size[::-1]
    )  # We reverse the shape of `image` because `image.size` returns width and height.
    seg = tf.math.argmax(logits, axis=-1)[0]

    color_seg = np.zeros(
        (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
    )  # height, width, 3
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    # Show image + mask
    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig

demo = gr.Interface(fn=sepia,
                    inputs=gr.Image(shape=(400, 600)),
                    outputs=['plot'],
                    examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
                    allow_flagging='never')


demo.launch()