--- library_name: transformers tags: - generated_from_trainer - mnli - text-classification - bert metrics: - accuracy - f1 model-index: - name: mnli-finetuned-bert-base-cased results: - task: type: text-classification name: Natural Language Inference dataset: name: MultiNLI type: nyu-mll/glue metrics: - name: Accuracy type: accuracy value: 0.6368 - name: F1 type: f1 value: 0.6358 license: mit datasets: - nyu-mll/glue language: - en base_model: - google-bert/bert-base-cased pipeline_tag: text-classification --- # soonbob/mnli-finetuned-bert-base-cased MNLI 데이터셋을 학습시킨 BERT 파인튜닝 연습용으로 만든 것입니다. This is a BERT-based model fine-tuned on the [Multi-Genre Natural Language Inference (MultiNLI)](https://huggingface.co/datasets/glue/viewer/mnli) dataset for the task of **natural language inference** (NLI), using Hugging Face's `Trainer`. It classifies a pair of sentences into one of the following classes: - **entailment** - **neutral** - **contradiction** ## 🧠 Intended Use This model can be used for: - Evaluating whether one sentence logically follows from another - Sentence-pair classification tasks - Transfer learning for other NLI-style problems It achieves the following results on the evaluation set: - Loss: 0.8276 - Accuracy: 0.6368 - F1: 0.6358 ## ⚙️ Training Details - Base model: [`bert-base-cased`](https://huggingface.co/bert-base-cased) - Dataset: `nyu-mll/glue`, subset: `mnli` - Epochs: 3 - Learning rate: 1e-3 - Optimizer: AdamW - Scheduler: Linear ### 🏋️ Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### 🏋️ Training Logs | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8662 | 1.0 | 2455 | 0.8682 | 0.6033 | 0.5946 | | 0.7964 | 2.0 | 4910 | 0.8449 | 0.6242 | 0.6242 | | 0.7323 | 3.0 | 7365 | 0.8673 | 0.6237 | 0.6231 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1