PEFT
Safetensors
English
llama
4-bit precision
bitsandbytes
sonisatish119 commited on
Commit
1a1d553
·
verified ·
1 Parent(s): 3ddc4df

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -116
README.md CHANGED
@@ -1,72 +1,61 @@
 
1
  base_model: unsloth/Llama-3.2-1B-Instruct
2
  library_name: peft
 
3
 
4
- Model Card for PhysioMindAI-Llama3-Medical
5
 
6
- Model Details
7
 
8
- Model Description
9
 
10
- PhysioMindAI-Llama3-Medical is a fine-tuned version of the Llama-3.2-1B-Instruct model, specifically designed for medical applications. The model is trained to understand and generate medical content, assisting in tasks like symptom analysis, treatment suggestions, and patient query responses.
11
 
12
- Developed by: Satish Soni
 
 
 
 
 
 
 
13
 
14
- Organization: Globalspace Technologies Ltd
15
 
16
- Funded by [optional]: [More Information Needed]
 
 
17
 
18
- Shared by [optional]: sonisatish119
19
 
20
- Model type: Medical NLP, LLM
21
-
22
- Language(s) (NLP): English
23
-
24
- License: Apache 2.0
25
-
26
- Finetuned from model: unsloth/Llama-3.2-1B-Instruct
27
-
28
- Model Sources
29
-
30
- Repository: PhysioMindAI-Llama3-Medical
31
-
32
- Paper [optional]: [More Information Needed]
33
-
34
- Demo [optional]: [More Information Needed]
35
-
36
- Uses
37
-
38
- Direct Use
39
 
40
  PhysioMindAI-Llama3-Medical can be used for:
 
 
 
 
41
 
42
- Medical question answering
43
-
44
- Clinical note summarization
45
-
46
- Symptom checker and risk assessment
47
-
48
- Generating patient-friendly explanations
49
 
50
- Downstream Use
 
51
 
52
- Can be integrated into healthcare chatbots and virtual assistants
53
 
54
- Can be fine-tuned further for specific medical domains
 
55
 
56
- Out-of-Scope Use
57
 
58
- Not intended for real-time clinical decision-making without human oversight
59
 
60
- Should not be used for emergency medical advice
 
61
 
62
- Bias, Risks, and Limitations
63
-
64
- Recommendations
65
-
66
- Users should be aware of potential biases in training data and limitations in accuracy. Always verify critical medical information with professionals.
67
-
68
- How to Get Started with the Model
69
 
 
70
  from transformers import AutoModelForCausalLM, AutoTokenizer
71
 
72
  model_name = "sonisatish119/PhysioMindAI-Llama3-Medical"
@@ -78,72 +67,3 @@ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
78
  output = model.generate(**inputs, max_new_tokens=100)
79
 
80
  print(tokenizer.decode(output[0], skip_special_tokens=True))
81
-
82
- Training Details
83
-
84
- Training Data
85
-
86
- The model was trained using medical datasets including disease descriptions, treatments, and patient interactions.
87
-
88
- Training Procedure
89
-
90
- Training Hyperparameters
91
-
92
- Training regime: Mixed precision (bf16)
93
-
94
- Evaluation
95
-
96
- Testing Data, Factors & Metrics
97
-
98
- Testing Data: Medical QA datasets
99
-
100
- Metrics: Perplexity, BLEU, and domain-specific accuracy
101
-
102
- Results
103
-
104
- Demonstrates improved performance on medical Q&A benchmarks compared to the base model.
105
-
106
- Environmental Impact
107
-
108
- Hardware Type: A100 GPUs
109
-
110
- Hours used: [More Information Needed]
111
-
112
- Cloud Provider: Azure ML
113
-
114
- Compute Region: US-East
115
-
116
- Carbon Emitted: Estimated using ML Impact Calculator
117
-
118
- Technical Specifications
119
-
120
- Model Architecture and Objective
121
-
122
- Based on Llama-3.2-1B-Instruct
123
-
124
- Fine-tuned for medical Q&A and clinical text generation
125
-
126
- Citation
127
-
128
- BibTeX:
129
-
130
- @misc{PhysioMindAI2025,
131
- author = {Satish Soni},
132
- organization = {Globalspace Technologies Ltd},
133
- title = {PhysioMindAI-Llama3-Medical},
134
- year = {2025},
135
- url = {https://huggingface.co/sonisatish119/PhysioMindAI-Llama3-Medical}
136
- }
137
-
138
- More Information
139
-
140
- For updates and discussions, visit the Hugging Face model page.
141
-
142
- Model Card Contact
143
-
144
- For questions and issues, contact sonisatish119.
145
-
146
- Framework versions
147
-
148
- PEFT 0.14.0
149
-
 
1
+ ---
2
  base_model: unsloth/Llama-3.2-1B-Instruct
3
  library_name: peft
4
+ ---
5
 
6
+ # Model Card for PhysioMindAI-Llama3-Medical
7
 
8
+ ## Model Details
9
 
10
+ ### Model Description
11
 
12
+ PhysioMindAI-Llama3-Medical is a fine-tuned version of the **Llama-3.2-1B-Instruct** model, specifically designed for medical applications. The model is trained to understand and generate medical content, assisting in tasks like symptom analysis, treatment suggestions, and patient query responses.
13
 
14
+ - **Developed by:** Satish Soni
15
+ - **Organization:** Globalspace Technologies Ltd
16
+ - **Funded by [optional]:** _More Information Needed_
17
+ - **Shared by [optional]:** sonisatish119
18
+ - **Model type:** Medical NLP, LLM
19
+ - **Language(s) (NLP):** English
20
+ - **License:** Apache 2.0
21
+ - **Finetuned from model:** `unsloth/Llama-3.2-1B-Instruct`
22
 
23
+ ### Model Sources
24
 
25
+ - **Repository:** [PhysioMindAI-Llama3-Medical](https://huggingface.co/sonisatish119/PhysioMindAI-Llama3-Medical)
26
+ - **Paper [optional]:** _More Information Needed_
27
+ - **Demo [optional]:** _More Information Needed_
28
 
29
+ ## Uses
30
 
31
+ ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  PhysioMindAI-Llama3-Medical can be used for:
34
+ - ✅ Medical question answering
35
+ - ✅ Clinical note summarization
36
+ - ✅ Symptom checker and risk assessment
37
+ - ✅ Generating patient-friendly explanations
38
 
39
+ ### Downstream Use
 
 
 
 
 
 
40
 
41
+ - 🏥 Can be integrated into healthcare chatbots and virtual assistants
42
+ - 🛠️ Can be fine-tuned further for specific medical domains
43
 
44
+ ### Out-of-Scope Use
45
 
46
+ ⚠️ Not intended for real-time clinical decision-making without human oversight
47
+ ⚠️ Should not be used for emergency medical advice
48
 
49
+ ## Bias, Risks, and Limitations
50
 
51
+ ### Recommendations
52
 
53
+ ⚠️ Users should be aware of potential biases in training data and limitations in accuracy.
54
+ ✅ Always verify critical medical information with professionals.
55
 
56
+ ## How to Get Started with the Model
 
 
 
 
 
 
57
 
58
+ ```python
59
  from transformers import AutoModelForCausalLM, AutoTokenizer
60
 
61
  model_name = "sonisatish119/PhysioMindAI-Llama3-Medical"
 
67
  output = model.generate(**inputs, max_new_tokens=100)
68
 
69
  print(tokenizer.decode(output[0], skip_special_tokens=True))