songhieng commited on
Commit
c2668f6
Β·
verified Β·
1 Parent(s): 242152b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -172
README.md CHANGED
@@ -1,199 +1,151 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
164
 
165
- [More Information Needed]
 
 
 
166
 
167
- #### Software
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
 
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - kimleang123/khmer-text-dataset
6
+ language:
7
+ - km
8
+ base_model:
9
+ - google/mt5-small
10
+ pipeline_tag: summarization
11
  ---
12
+ # Khmer mT5 Summarization Model
13
 
14
+ ## πŸ“Œ Introduction
15
+ This repository contains a **fine-tuned mT5 model for Khmer text summarization**. The model is based on Google's [mT5-small](https://huggingface.co/google/mt5-small) and fine-tuned on a dataset of Khmer text and corresponding summaries.
16
 
17
+ Fine-tuning was performed using the Hugging Face `Trainer` API, optimizing the model to **generate concise and meaningful summaries of Khmer text**.
18
 
19
+ ---
20
 
21
+ ## πŸš€ Model Details
22
+ - **Base Model:** `google/mt5-small`
23
+ - **Fine-tuned for:** Khmer text summarization
24
+ - **Training Dataset:** `kimleang123/khmer-text-dataset`
25
+ - **Framework:** Hugging Face `transformers`
26
+ - **Task Type:** Sequence-to-Sequence (Seq2Seq)
27
+ - **Input:** Khmer text (articles, paragraphs, or documents)
28
+ - **Output:** Summarized Khmer text
29
+ - **Training Hardware:** GPU (Tesla T4)
30
+ - **Evaluation Metric:** ROUGE Score
31
 
32
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ ## πŸ”§ Installation & Setup
35
+ ### 1️⃣ Install Dependencies
36
+ Ensure you have `transformers`, `torch`, and `datasets` installed:
37
+ ```bash
38
+ pip install transformers torch datasets
39
+ ```
40
 
41
+ ### 2️⃣ Load the Model
42
+ To load and use the fine-tuned model:
43
+ ```python
44
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
45
 
46
+ model_name = "your-username/khmer-mt5-summarization"
47
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
48
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
49
+ ```
50
 
51
+ ---
52
 
53
+ ## πŸ“Œ How to Use
54
+ ### 1️⃣ Using Python Code
55
+ ```python
56
+ def summarize_khmer(text, max_length=150):
57
+ input_text = f"summarize: {text}"
58
+ inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
59
+ summary_ids = model.generate(**inputs, max_length=max_length, num_beams=5, length_penalty=2.0, early_stopping=True)
60
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
61
+ return summary
62
+
63
+ khmer_text = "αž€αž˜αŸ’αž–αž»αž‡αžΆαž˜αžΆαž“αž”αŸ’αžšαž‡αžΆαž‡αž“αž”αŸ’αžšαž˜αžΆαžŽ ៑៦ αž›αžΆαž“αž“αžΆαž€αŸ‹ αž αžΎαž™αžœαžΆαž‚αžΊαž‡αžΆαž”αŸ’αžšαž‘αŸαžŸαž“αŸ…αžαŸ†αž”αž“αŸ‹αž’αžΆαžŸαŸŠαžΈαž’αžΆαž‚αŸ’αž“αŸαž™αŸαŸ”"
64
+ summary = summarize_khmer(khmer_text)
65
+ print("πŸ”Ή Khmer Summary:", summary)
66
+ ```
67
+
68
+ ### 2️⃣ Using Hugging Face Pipeline
69
+ For a simpler approach:
70
+ ```python
71
+ from transformers import pipeline
72
+
73
+ summarizer = pipeline("summarization", model="your-username/khmer-mt5-summarization")
74
+ khmer_text = "αž€αž˜αŸ’αž–αž»αž‡αžΆαž˜αžΆαž“αž”αŸ’αžšαž‡αžΆαž‡αž“αž”αŸ’αžšαž˜αžΆαžŽ ៑៦ αž›αžΆαž“αž“αžΆαž€αŸ‹ αž αžΎαž™αžœαžΆαž‚αžΊαž‡αžΆαž”αŸ’αžšαž‘αŸαžŸαž“αŸ…αžαŸ†αž”αž“αŸ‹αž’αžΆαžŸαŸŠαžΈαž’αžΆαž‚αŸ’αž“αŸαž™αŸαŸ”"
75
+ summary = summarizer(khmer_text, max_length=150, min_length=30, do_sample=False)
76
+ print("πŸ”Ή Khmer Summary:", summary[0]['summary_text'])
77
+ ```
78
+
79
+ ### 3️⃣ Deploy as an API using FastAPI
80
+ You can create a simple API for summarization:
81
+ ```python
82
+ from fastapi import FastAPI
83
+
84
+ app = FastAPI()
85
+
86
+ @app.post("/summarize/")
87
+ def summarize(text: str):
88
+ inputs = tokenizer(f"summarize: {text}", return_tensors="pt", truncation=True, max_length=512)
89
+ summary_ids = model.generate(**inputs, max_length=150, num_beams=5, length_penalty=2.0, early_stopping=True)
90
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
91
+ return {"summary": summary}
92
+
93
+ # Run with: uvicorn filename:app --reload
94
+ ```
95
 
96
+ ---
97
 
98
+ ## πŸ“Š Model Evaluation
99
+ The model was evaluated using **ROUGE scores**, which measure how similar the generated summaries are to the ground truth summaries.
100
 
101
+ ```python
102
+ from datasets import load_metric
103
 
104
+ rouge = load_metric("rouge")
105
 
106
+ def compute_metrics(pred):
107
+ labels_ids = pred.label_ids
108
+ pred_ids = pred.predictions
109
+ decoded_preds = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
110
+ decoded_labels = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
111
+ return rouge.compute(predictions=decoded_preds, references=decoded_labels)
112
 
113
+ trainer.evaluate()
114
+ ```
115
 
116
+ ---
117
 
118
+ ## πŸ’Ύ Saving & Uploading the Model
119
+ After fine-tuning, the model was uploaded to Hugging Face Hub:
120
+ ```python
121
+ model.push_to_hub("your-username/khmer-mt5-summarization")
122
+ tokenizer.push_to_hub("your-username/khmer-mt5-summarization")
123
+ ```
124
+ To download it later:
125
+ ```python
126
+ model = AutoModelForSeq2SeqLM.from_pretrained("your-username/khmer-mt5-summarization")
127
+ tokenizer = AutoTokenizer.from_pretrained("your-username/khmer-mt5-summarization")
128
+ ```
129
 
130
+ ---
131
 
132
+ ## 🎯 Summary
133
+ | **Feature** | **Details** |
134
+ |------------|------------|
135
+ | **Base Model** | `google/mt5-small` |
136
+ | **Task** | Summarization |
137
+ | **Language** | Khmer (αžαŸ’αž˜αŸ‚αžš) |
138
+ | **Dataset** | `kimleang123/khmer-text-dataset` |
139
+ | **Framework** | Hugging Face Transformers |
140
+ | **Evaluation Metric** | ROUGE Score |
141
+ | **Deployment** | Hugging Face Model Hub, API (FastAPI), Python Code |
142
 
143
+ ---
144
 
145
+ ## 🀝 Contributing
146
+ Contributions are welcome! Feel free to **open issues or submit pull requests** if you find any improvements.
147
 
148
+ ### πŸ“¬ Contact
149
+ If you have any questions, feel free to reach out via [Hugging Face Discussions](https://huggingface.co/) or create an issue in the repository.
150
 
151
+ πŸ“Œ **Built for Khmer NLP Community** πŸ‡°πŸ‡­ πŸš€