sidpanda commited on
Commit
c22af26
·
verified ·
1 Parent(s): 24cac5d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +205 -1
README.md CHANGED
@@ -32,4 +32,208 @@ pipeline_tag: text2text-generation
32
  inference:
33
  parameters:
34
  max_new_tokens: 200
35
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  inference:
33
  parameters:
34
  max_new_tokens: 200
35
+ ---
36
+ # Pragna 1b
37
+
38
+ <!-- Provide a quick summary of what the model is/does. -->
39
+
40
+
41
+ ## Architecture Overview
42
+ Pragna-1B is a decoder-only transformer model inspired by TinyLlama, featuring the following specifications:
43
+
44
+ Layers: 22
45
+ Attention Heads: 32
46
+ Context Length: 2048
47
+ Hidden Dimension: 2048
48
+ Expansion Dimension: 5632
49
+ Vocabulary Size: 69632
50
+ This model incorporates Rotary Positional Encoding to infuse positional information into the embeddings, utilising a base of 10,000. It employs RSNorm with an epsilon value of 1e-5 and the Sigmoid Activation Unit (SiLU) as the activation function. Additionally, Pragna-1B adopts Grouped Query Attention, an alternative to Multi-Head Attention, which enhances training and inference speed while reducing memory bandwidth. This also supports the use of lower-compute devices for inference tasks.
51
+
52
+ Pragna-1B is trained on our proprietary platform, GenAI Studio, a modular AI Developer Platform designed to support any GenAI model architecture. It is capable of scaling across thousands of GPUs or accelerators and is built to be fault-tolerant. The development of this model leveraged Triton, an open-source language from OpenAI, for crafting high-performance custom fused CUDA Kernels for various operations. Furthermore, the model uses Fully Sharded Data Parallel (FSDP) for distributed and parallel training and incorporates the state-of-the-art FlashAttention2 to accelerate training and inference.
53
+
54
+ ### Model Description
55
+
56
+ <!-- Provide a longer summary of what this model is. -->
57
+
58
+
59
+
60
+ - **Developed by:** [More Information Needed]
61
+ - **Funded by [optional]:** [More Information Needed]
62
+ - **Shared by [optional]:** [More Information Needed]
63
+ - **Model type:** [More Information Needed]
64
+ - **Language(s) (NLP):** [More Information Needed]
65
+ - **License:** [More Information Needed]
66
+ - **Finetuned from model [optional]:** [More Information Needed]
67
+
68
+ ### Model Sources [optional]
69
+
70
+ <!-- Provide the basic links for the model. -->
71
+
72
+ - **Repository:** [More Information Needed]
73
+ - **Paper [optional]:** [More Information Needed]
74
+ - **Demo [optional]:** [More Information Needed]
75
+
76
+ ## Uses
77
+
78
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
79
+
80
+ ### Direct Use
81
+
82
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
83
+
84
+ [More Information Needed]
85
+
86
+ ### Downstream Use [optional]
87
+
88
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
89
+
90
+ [More Information Needed]
91
+
92
+ ### Out-of-Scope Use
93
+
94
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
95
+
96
+ [More Information Needed]
97
+
98
+ ## Bias, Risks, and Limitations
99
+
100
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
101
+
102
+ [More Information Needed]
103
+
104
+ ### Recommendations
105
+
106
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
107
+
108
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
109
+
110
+ ## How to Get Started with the Model
111
+
112
+ Use the code below to get started with the model.
113
+
114
+ [More Information Needed]
115
+
116
+ ## Training Details
117
+
118
+ ### Training Data
119
+
120
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
121
+
122
+ [More Information Needed]
123
+
124
+ ### Training Procedure
125
+
126
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
127
+
128
+ #### Preprocessing [optional]
129
+
130
+ [More Information Needed]
131
+
132
+
133
+ #### Training Hyperparameters
134
+
135
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
136
+
137
+ #### Speeds, Sizes, Times [optional]
138
+
139
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
140
+
141
+ [More Information Needed]
142
+
143
+ ## Evaluation
144
+
145
+ <!-- This section describes the evaluation protocols and provides the results. -->
146
+
147
+ ### Testing Data, Factors & Metrics
148
+
149
+ #### Testing Data
150
+
151
+ <!-- This should link to a Dataset Card if possible. -->
152
+
153
+ [More Information Needed]
154
+
155
+ #### Factors
156
+
157
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
158
+
159
+ [More Information Needed]
160
+
161
+ #### Metrics
162
+
163
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
164
+
165
+ [More Information Needed]
166
+
167
+ ### Results
168
+
169
+ [More Information Needed]
170
+
171
+ #### Summary
172
+
173
+
174
+
175
+ ## Model Examination [optional]
176
+
177
+ <!-- Relevant interpretability work for the model goes here -->
178
+
179
+ [More Information Needed]
180
+
181
+ ## Environmental Impact
182
+
183
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
184
+
185
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
186
+
187
+ - **Hardware Type:** [More Information Needed]
188
+ - **Hours used:** [More Information Needed]
189
+ - **Cloud Provider:** [More Information Needed]
190
+ - **Compute Region:** [More Information Needed]
191
+ - **Carbon Emitted:** [More Information Needed]
192
+
193
+ ## Technical Specifications [optional]
194
+
195
+ ### Model Architecture and Objective
196
+
197
+ [More Information Needed]
198
+
199
+ ### Compute Infrastructure
200
+
201
+ [More Information Needed]
202
+
203
+ #### Hardware
204
+
205
+ [More Information Needed]
206
+
207
+ #### Software
208
+
209
+ [More Information Needed]
210
+
211
+ ## Citation [optional]
212
+
213
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
214
+
215
+ **BibTeX:**
216
+
217
+ [More Information Needed]
218
+
219
+ **APA:**
220
+
221
+ [More Information Needed]
222
+
223
+ ## Glossary [optional]
224
+
225
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
226
+
227
+ [More Information Needed]
228
+
229
+ ## More Information [optional]
230
+
231
+ [More Information Needed]
232
+
233
+ ## Model Card Authors [optional]
234
+
235
+ [More Information Needed]
236
+
237
+ ## Model Card Contact
238
+
239
+ [More Information Needed]