--- license: mit base_model: Xenova/clap-htsat-unfused tags: - audio-classification - transformers.js - clap - audio-tagging library_name: transformers.js --- # clip-tagger Model This is a personalized audio tagging model based on CLAP (Contrastive Language-Audio Pre-training). It extends the base Xenova/clap-htsat-unfused model with user feedback and custom tags. ## Model Description - **Base Model**: [Xenova/clap-htsat-unfused](https://huggingface.co/Xenova/clap-htsat-unfused) - **Framework**: Transformers.js compatible - **Training**: User feedback and custom tag integration - **Use Case**: Personalized audio content tagging ## Usage ```javascript import { CLAPProcessor } from './clapProcessor.js'; import { LocalClassifier } from './localClassifier.js'; // Load the model const processor = new CLAPProcessor(); const classifier = new LocalClassifier(); classifier.loadModel(); // Loads from localStorage or model files // Process audio const tags = await processor.processAudio(audioBuffer); const personalizedTags = classifier.predictAll(features, candidateTags); ``` ## Files - `localClassifier.js` - Local classifier implementation - `clapProcessor.js` - CLAP model wrapper - `userFeedbackStore.js` - User feedback storage system - `model-config.json` - Model configuration - `example-usage.html` - Usage example ## Demo Try the live demo: [clip-tagger Space](https://huggingface.co/spaces/sohei1l/clip-tagger) ## Training Data This model learns from user corrections and custom tags. The base CLAP model provides initial audio understanding, while the local classifier adapts to user preferences.