Commit
·
361ee5e
0
Parent(s):
Initial model release
Browse files- README.md +53 -0
- clapProcessor.js +158 -0
- example-usage.html +30 -0
- localClassifier.js +205 -0
- model-config.json +67 -0
- userFeedbackStore.js +213 -0
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: Xenova/clap-htsat-unfused
|
4 |
+
tags:
|
5 |
+
- audio-classification
|
6 |
+
- transformers.js
|
7 |
+
- clap
|
8 |
+
- audio-tagging
|
9 |
+
library_name: transformers.js
|
10 |
+
---
|
11 |
+
|
12 |
+
# clip-tagger Model
|
13 |
+
|
14 |
+
This is a personalized audio tagging model based on CLAP (Contrastive Language-Audio Pre-training). It extends the base Xenova/clap-htsat-unfused model with user feedback and custom tags.
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
- **Base Model**: [Xenova/clap-htsat-unfused](https://huggingface.co/Xenova/clap-htsat-unfused)
|
19 |
+
- **Framework**: Transformers.js compatible
|
20 |
+
- **Training**: User feedback and custom tag integration
|
21 |
+
- **Use Case**: Personalized audio content tagging
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
```javascript
|
26 |
+
import { CLAPProcessor } from './clapProcessor.js';
|
27 |
+
import { LocalClassifier } from './localClassifier.js';
|
28 |
+
|
29 |
+
// Load the model
|
30 |
+
const processor = new CLAPProcessor();
|
31 |
+
const classifier = new LocalClassifier();
|
32 |
+
classifier.loadModel(); // Loads from localStorage or model files
|
33 |
+
|
34 |
+
// Process audio
|
35 |
+
const tags = await processor.processAudio(audioBuffer);
|
36 |
+
const personalizedTags = classifier.predictAll(features, candidateTags);
|
37 |
+
```
|
38 |
+
|
39 |
+
## Files
|
40 |
+
|
41 |
+
- `localClassifier.js` - Local classifier implementation
|
42 |
+
- `clapProcessor.js` - CLAP model wrapper
|
43 |
+
- `userFeedbackStore.js` - User feedback storage system
|
44 |
+
- `model-config.json` - Model configuration
|
45 |
+
- `example-usage.html` - Usage example
|
46 |
+
|
47 |
+
## Demo
|
48 |
+
|
49 |
+
Try the live demo: [clip-tagger Space](https://huggingface.co/spaces/sohei1l/clip-tagger)
|
50 |
+
|
51 |
+
## Training Data
|
52 |
+
|
53 |
+
This model learns from user corrections and custom tags. The base CLAP model provides initial audio understanding, while the local classifier adapts to user preferences.
|
clapProcessor.js
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { pipeline, AutoProcessor, ClapAudioModelWithProjection } from '@xenova/transformers';
|
2 |
+
|
3 |
+
class CLAPProcessor {
|
4 |
+
constructor() {
|
5 |
+
this.model = null;
|
6 |
+
this.processor = null;
|
7 |
+
this.defaultLabels = [
|
8 |
+
'speech', 'music', 'singing', 'guitar', 'piano', 'drums', 'violin',
|
9 |
+
'trumpet', 'saxophone', 'flute', 'classical music', 'rock music',
|
10 |
+
'pop music', 'jazz', 'electronic music', 'ambient', 'nature sounds',
|
11 |
+
'rain', 'wind', 'ocean waves', 'birds chirping', 'dog barking',
|
12 |
+
'cat meowing', 'car engine', 'traffic', 'footsteps', 'door closing',
|
13 |
+
'applause', 'laughter', 'crying', 'coughing', 'sneezing',
|
14 |
+
'telephone ringing', 'alarm clock', 'typing', 'water running',
|
15 |
+
'fire crackling', 'thunder', 'helicopter', 'airplane', 'train',
|
16 |
+
'motorcycle', 'bell ringing', 'whistle', 'horn', 'siren',
|
17 |
+
'explosion', 'gunshot', 'silence', 'noise', 'distortion'
|
18 |
+
];
|
19 |
+
}
|
20 |
+
|
21 |
+
async initialize() {
|
22 |
+
if (this.model && this.processor) return;
|
23 |
+
|
24 |
+
try {
|
25 |
+
// Load the CLAP model and processor
|
26 |
+
this.processor = await AutoProcessor.from_pretrained('Xenova/clap-htsat-unfused');
|
27 |
+
this.model = await ClapAudioModelWithProjection.from_pretrained('Xenova/clap-htsat-unfused');
|
28 |
+
|
29 |
+
console.log('CLAP model loaded successfully');
|
30 |
+
} catch (error) {
|
31 |
+
console.error('Failed to load CLAP model:', error);
|
32 |
+
throw error;
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
async processAudio(audioBuffer) {
|
37 |
+
if (!this.model || !this.processor) {
|
38 |
+
await this.initialize();
|
39 |
+
}
|
40 |
+
|
41 |
+
try {
|
42 |
+
// Convert audio to the format expected by CLAP
|
43 |
+
const audio = await this.preprocessAudio(audioBuffer);
|
44 |
+
|
45 |
+
// Process audio through the model
|
46 |
+
const audioInputs = await this.processor(audio);
|
47 |
+
const audioFeatures = await this.model.get_audio_features(audioInputs);
|
48 |
+
|
49 |
+
// Process text labels
|
50 |
+
const textInputs = await this.processor.text(this.defaultLabels);
|
51 |
+
const textFeatures = await this.model.get_text_features(textInputs);
|
52 |
+
|
53 |
+
// Calculate similarities
|
54 |
+
const similarities = await this.calculateSimilarities(audioFeatures, textFeatures);
|
55 |
+
|
56 |
+
// Return top tags with confidence scores
|
57 |
+
return this.getTopTags(similarities, 5);
|
58 |
+
} catch (error) {
|
59 |
+
console.error('Error processing audio:', error);
|
60 |
+
throw error;
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
async preprocessAudio(audioBuffer) {
|
65 |
+
// Convert to mono if stereo
|
66 |
+
let audioData;
|
67 |
+
if (audioBuffer.numberOfChannels > 1) {
|
68 |
+
audioData = new Float32Array(audioBuffer.length);
|
69 |
+
for (let i = 0; i < audioBuffer.length; i++) {
|
70 |
+
let sum = 0;
|
71 |
+
for (let channel = 0; channel < audioBuffer.numberOfChannels; channel++) {
|
72 |
+
sum += audioBuffer.getChannelData(channel)[i];
|
73 |
+
}
|
74 |
+
audioData[i] = sum / audioBuffer.numberOfChannels;
|
75 |
+
}
|
76 |
+
} else {
|
77 |
+
audioData = audioBuffer.getChannelData(0);
|
78 |
+
}
|
79 |
+
|
80 |
+
// Resample to 48kHz if needed (CLAP expects 48kHz)
|
81 |
+
const targetSampleRate = 48000;
|
82 |
+
if (audioBuffer.sampleRate !== targetSampleRate) {
|
83 |
+
audioData = await this.resampleAudio(audioData, audioBuffer.sampleRate, targetSampleRate);
|
84 |
+
}
|
85 |
+
|
86 |
+
return audioData;
|
87 |
+
}
|
88 |
+
|
89 |
+
async resampleAudio(audioData, originalRate, targetRate) {
|
90 |
+
// Simple linear interpolation resampling
|
91 |
+
const ratio = originalRate / targetRate;
|
92 |
+
const newLength = Math.round(audioData.length / ratio);
|
93 |
+
const resampled = new Float32Array(newLength);
|
94 |
+
|
95 |
+
for (let i = 0; i < newLength; i++) {
|
96 |
+
const originalIndex = i * ratio;
|
97 |
+
const indexFloor = Math.floor(originalIndex);
|
98 |
+
const indexCeil = Math.min(indexFloor + 1, audioData.length - 1);
|
99 |
+
const fraction = originalIndex - indexFloor;
|
100 |
+
|
101 |
+
resampled[i] = audioData[indexFloor] * (1 - fraction) + audioData[indexCeil] * fraction;
|
102 |
+
}
|
103 |
+
|
104 |
+
return resampled;
|
105 |
+
}
|
106 |
+
|
107 |
+
async calculateSimilarities(audioFeatures, textFeatures) {
|
108 |
+
// Calculate cosine similarity between audio and text features
|
109 |
+
const audioVector = audioFeatures.data;
|
110 |
+
const similarities = [];
|
111 |
+
|
112 |
+
for (let i = 0; i < this.defaultLabels.length; i++) {
|
113 |
+
const textVector = textFeatures.data.slice(
|
114 |
+
i * audioVector.length,
|
115 |
+
(i + 1) * audioVector.length
|
116 |
+
);
|
117 |
+
|
118 |
+
const similarity = this.cosineSimilarity(audioVector, textVector);
|
119 |
+
similarities.push(similarity);
|
120 |
+
}
|
121 |
+
|
122 |
+
return similarities;
|
123 |
+
}
|
124 |
+
|
125 |
+
cosineSimilarity(vecA, vecB) {
|
126 |
+
let dotProduct = 0;
|
127 |
+
let normA = 0;
|
128 |
+
let normB = 0;
|
129 |
+
|
130 |
+
for (let i = 0; i < vecA.length; i++) {
|
131 |
+
dotProduct += vecA[i] * vecB[i];
|
132 |
+
normA += vecA[i] * vecA[i];
|
133 |
+
normB += vecB[i] * vecB[i];
|
134 |
+
}
|
135 |
+
|
136 |
+
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
|
137 |
+
}
|
138 |
+
|
139 |
+
getTopTags(similarities, topK = 5) {
|
140 |
+
const tagged = this.defaultLabels.map((label, index) => ({
|
141 |
+
label,
|
142 |
+
confidence: Math.max(0, similarities[index]) // Ensure non-negative
|
143 |
+
}));
|
144 |
+
|
145 |
+
return tagged
|
146 |
+
.sort((a, b) => b.confidence - a.confidence)
|
147 |
+
.slice(0, topK);
|
148 |
+
}
|
149 |
+
|
150 |
+
// Convert file to AudioBuffer
|
151 |
+
async fileToAudioBuffer(file) {
|
152 |
+
const arrayBuffer = await file.arrayBuffer();
|
153 |
+
const audioContext = new (window.AudioContext || window.webkitAudioContext)();
|
154 |
+
return await audioContext.decodeAudioData(arrayBuffer);
|
155 |
+
}
|
156 |
+
}
|
157 |
+
|
158 |
+
export default CLAPProcessor;
|
example-usage.html
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>clip-tagger Model Usage Example</title>
|
5 |
+
<script type="module">
|
6 |
+
import { CLAPProcessor } from './clapProcessor.js';
|
7 |
+
import { LocalClassifier } from './localClassifier.js';
|
8 |
+
|
9 |
+
async function loadModel() {
|
10 |
+
const processor = new CLAPProcessor();
|
11 |
+
const classifier = new LocalClassifier();
|
12 |
+
|
13 |
+
// Initialize
|
14 |
+
await processor.initialize();
|
15 |
+
classifier.loadModel();
|
16 |
+
|
17 |
+
console.log('Model loaded successfully!');
|
18 |
+
console.log('Model stats:', classifier.getModelStats());
|
19 |
+
}
|
20 |
+
|
21 |
+
// Load when page loads
|
22 |
+
loadModel();
|
23 |
+
</script>
|
24 |
+
</head>
|
25 |
+
<body>
|
26 |
+
<h1>clip-tagger Model</h1>
|
27 |
+
<p>Check the browser console for model loading status.</p>
|
28 |
+
<p>See the full demo at: <a href="https://huggingface.co/spaces/sohei1l/clip-tagger">clip-tagger Space</a></p>
|
29 |
+
</body>
|
30 |
+
</html>
|
localClassifier.js
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class LocalClassifier {
|
2 |
+
constructor() {
|
3 |
+
this.weights = new Map(); // tag -> weight vector
|
4 |
+
this.biases = new Map(); // tag -> bias
|
5 |
+
this.learningRate = 0.01;
|
6 |
+
this.featureDim = 512; // CLAP embedding dimension
|
7 |
+
this.isInitialized = false;
|
8 |
+
}
|
9 |
+
|
10 |
+
initialize(featureDim = 512) {
|
11 |
+
this.featureDim = featureDim;
|
12 |
+
this.isInitialized = true;
|
13 |
+
}
|
14 |
+
|
15 |
+
// Simple logistic regression training
|
16 |
+
trainOnFeedback(features, tag, feedback) {
|
17 |
+
if (!this.isInitialized) {
|
18 |
+
this.initialize();
|
19 |
+
}
|
20 |
+
|
21 |
+
// Convert feedback to target value
|
22 |
+
let target;
|
23 |
+
switch (feedback) {
|
24 |
+
case 'positive':
|
25 |
+
target = 1.0;
|
26 |
+
break;
|
27 |
+
case 'negative':
|
28 |
+
target = 0.0;
|
29 |
+
break;
|
30 |
+
case 'custom':
|
31 |
+
target = 1.0;
|
32 |
+
break;
|
33 |
+
default:
|
34 |
+
return; // Skip unknown feedback
|
35 |
+
}
|
36 |
+
|
37 |
+
// Initialize weights for new tag
|
38 |
+
if (!this.weights.has(tag)) {
|
39 |
+
this.weights.set(tag, new Array(this.featureDim).fill(0).map(() =>
|
40 |
+
(Math.random() - 0.5) * 0.01
|
41 |
+
));
|
42 |
+
this.biases.set(tag, 0);
|
43 |
+
}
|
44 |
+
|
45 |
+
const weights = this.weights.get(tag);
|
46 |
+
const bias = this.biases.get(tag);
|
47 |
+
|
48 |
+
// Forward pass
|
49 |
+
let logit = bias;
|
50 |
+
for (let i = 0; i < features.length; i++) {
|
51 |
+
logit += weights[i] * features[i];
|
52 |
+
}
|
53 |
+
|
54 |
+
// Sigmoid activation
|
55 |
+
const prediction = 1 / (1 + Math.exp(-logit));
|
56 |
+
|
57 |
+
// Compute gradient
|
58 |
+
const error = prediction - target;
|
59 |
+
|
60 |
+
// Update weights and bias
|
61 |
+
for (let i = 0; i < features.length; i++) {
|
62 |
+
weights[i] -= this.learningRate * error * features[i];
|
63 |
+
}
|
64 |
+
this.biases.set(tag, bias - this.learningRate * error);
|
65 |
+
|
66 |
+
// Store updated weights
|
67 |
+
this.weights.set(tag, weights);
|
68 |
+
}
|
69 |
+
|
70 |
+
// Predict confidence for a tag given features
|
71 |
+
predict(features, tag) {
|
72 |
+
if (!this.weights.has(tag)) {
|
73 |
+
return null; // No training data for this tag
|
74 |
+
}
|
75 |
+
|
76 |
+
const weights = this.weights.get(tag);
|
77 |
+
const bias = this.biases.get(tag);
|
78 |
+
|
79 |
+
let logit = bias;
|
80 |
+
for (let i = 0; i < Math.min(features.length, weights.length); i++) {
|
81 |
+
logit += weights[i] * features[i];
|
82 |
+
}
|
83 |
+
|
84 |
+
// Sigmoid activation
|
85 |
+
return 1 / (1 + Math.exp(-logit));
|
86 |
+
}
|
87 |
+
|
88 |
+
// Get all predictions for given features
|
89 |
+
predictAll(features, candidateTags) {
|
90 |
+
const predictions = [];
|
91 |
+
|
92 |
+
for (const tag of candidateTags) {
|
93 |
+
const confidence = this.predict(features, tag);
|
94 |
+
if (confidence !== null) {
|
95 |
+
predictions.push({ tag, confidence });
|
96 |
+
}
|
97 |
+
}
|
98 |
+
|
99 |
+
return predictions.sort((a, b) => b.confidence - a.confidence);
|
100 |
+
}
|
101 |
+
|
102 |
+
// Retrain on batch of feedback data
|
103 |
+
retrainOnBatch(feedbackData) {
|
104 |
+
for (const item of feedbackData) {
|
105 |
+
if (item.audioFeatures && item.correctedTags) {
|
106 |
+
// Create simple features from audio metadata
|
107 |
+
const features = this.extractSimpleFeatures(item.audioFeatures);
|
108 |
+
|
109 |
+
// Train on corrected tags
|
110 |
+
for (const tagData of item.correctedTags) {
|
111 |
+
this.trainOnFeedback(features, tagData.tag, tagData.feedback);
|
112 |
+
}
|
113 |
+
}
|
114 |
+
}
|
115 |
+
}
|
116 |
+
|
117 |
+
// Extract simple features from audio metadata
|
118 |
+
extractSimpleFeatures(audioFeatures) {
|
119 |
+
// Create a simple feature vector from audio metadata
|
120 |
+
// In a real implementation, this would use actual CLAP embeddings
|
121 |
+
const features = new Array(this.featureDim).fill(0);
|
122 |
+
|
123 |
+
if (audioFeatures) {
|
124 |
+
// Use basic audio properties to create pseudo-features
|
125 |
+
features[0] = audioFeatures.duration / 60; // Duration in minutes
|
126 |
+
features[1] = audioFeatures.sampleRate / 48000; // Normalized sample rate
|
127 |
+
features[2] = audioFeatures.numberOfChannels; // Number of channels
|
128 |
+
|
129 |
+
// Fill remaining with small random values based on hash of properties
|
130 |
+
const seed = this.simpleHash(JSON.stringify(audioFeatures));
|
131 |
+
for (let i = 3; i < this.featureDim; i++) {
|
132 |
+
features[i] = this.seededRandom(seed + i) * 0.1;
|
133 |
+
}
|
134 |
+
}
|
135 |
+
|
136 |
+
return features;
|
137 |
+
}
|
138 |
+
|
139 |
+
// Simple hash function for seeded random
|
140 |
+
simpleHash(str) {
|
141 |
+
let hash = 0;
|
142 |
+
for (let i = 0; i < str.length; i++) {
|
143 |
+
const char = str.charCodeAt(i);
|
144 |
+
hash = ((hash << 5) - hash) + char;
|
145 |
+
hash = hash & hash; // Convert to 32-bit integer
|
146 |
+
}
|
147 |
+
return Math.abs(hash);
|
148 |
+
}
|
149 |
+
|
150 |
+
// Seeded random number generator
|
151 |
+
seededRandom(seed) {
|
152 |
+
const x = Math.sin(seed) * 10000;
|
153 |
+
return x - Math.floor(x);
|
154 |
+
}
|
155 |
+
|
156 |
+
// Save model to localStorage
|
157 |
+
saveModel() {
|
158 |
+
const modelData = {
|
159 |
+
weights: Object.fromEntries(this.weights),
|
160 |
+
biases: Object.fromEntries(this.biases),
|
161 |
+
featureDim: this.featureDim,
|
162 |
+
learningRate: this.learningRate
|
163 |
+
};
|
164 |
+
|
165 |
+
localStorage.setItem('clipTaggerModel', JSON.stringify(modelData));
|
166 |
+
}
|
167 |
+
|
168 |
+
// Load model from localStorage
|
169 |
+
loadModel() {
|
170 |
+
const saved = localStorage.getItem('clipTaggerModel');
|
171 |
+
if (saved) {
|
172 |
+
try {
|
173 |
+
const modelData = JSON.parse(saved);
|
174 |
+
this.weights = new Map(Object.entries(modelData.weights));
|
175 |
+
this.biases = new Map(Object.entries(modelData.biases));
|
176 |
+
this.featureDim = modelData.featureDim || 512;
|
177 |
+
this.learningRate = modelData.learningRate || 0.01;
|
178 |
+
this.isInitialized = true;
|
179 |
+
return true;
|
180 |
+
} catch (error) {
|
181 |
+
console.error('Error loading model:', error);
|
182 |
+
}
|
183 |
+
}
|
184 |
+
return false;
|
185 |
+
}
|
186 |
+
|
187 |
+
// Get model statistics
|
188 |
+
getModelStats() {
|
189 |
+
return {
|
190 |
+
trainedTags: this.weights.size,
|
191 |
+
featureDim: this.featureDim,
|
192 |
+
learningRate: this.learningRate,
|
193 |
+
tags: Array.from(this.weights.keys())
|
194 |
+
};
|
195 |
+
}
|
196 |
+
|
197 |
+
// Clear the model
|
198 |
+
clearModel() {
|
199 |
+
this.weights.clear();
|
200 |
+
this.biases.clear();
|
201 |
+
localStorage.removeItem('clipTaggerModel');
|
202 |
+
}
|
203 |
+
}
|
204 |
+
|
205 |
+
export default LocalClassifier;
|
model-config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "clip-tagger",
|
3 |
+
"base_model": "Xenova/clap-htsat-unfused",
|
4 |
+
"version": "1.0.0",
|
5 |
+
"framework": "transformers.js",
|
6 |
+
"feature_dim": 512,
|
7 |
+
"learning_rate": 0.01,
|
8 |
+
"supported_formats": [
|
9 |
+
"wav",
|
10 |
+
"mp3",
|
11 |
+
"m4a",
|
12 |
+
"ogg"
|
13 |
+
],
|
14 |
+
"default_labels": [
|
15 |
+
"speech",
|
16 |
+
"music",
|
17 |
+
"singing",
|
18 |
+
"guitar",
|
19 |
+
"piano",
|
20 |
+
"drums",
|
21 |
+
"violin",
|
22 |
+
"trumpet",
|
23 |
+
"saxophone",
|
24 |
+
"flute",
|
25 |
+
"classical music",
|
26 |
+
"rock music",
|
27 |
+
"pop music",
|
28 |
+
"jazz",
|
29 |
+
"electronic music",
|
30 |
+
"ambient",
|
31 |
+
"nature sounds",
|
32 |
+
"rain",
|
33 |
+
"wind",
|
34 |
+
"ocean waves",
|
35 |
+
"birds chirping",
|
36 |
+
"dog barking",
|
37 |
+
"cat meowing",
|
38 |
+
"car engine",
|
39 |
+
"traffic",
|
40 |
+
"footsteps",
|
41 |
+
"door closing",
|
42 |
+
"applause",
|
43 |
+
"laughter",
|
44 |
+
"crying",
|
45 |
+
"coughing",
|
46 |
+
"sneezing",
|
47 |
+
"telephone ringing",
|
48 |
+
"alarm clock",
|
49 |
+
"typing",
|
50 |
+
"water running",
|
51 |
+
"fire crackling",
|
52 |
+
"thunder",
|
53 |
+
"helicopter",
|
54 |
+
"airplane",
|
55 |
+
"train",
|
56 |
+
"motorcycle",
|
57 |
+
"bell ringing",
|
58 |
+
"whistle",
|
59 |
+
"horn",
|
60 |
+
"siren",
|
61 |
+
"explosion",
|
62 |
+
"gunshot",
|
63 |
+
"silence",
|
64 |
+
"noise",
|
65 |
+
"distortion"
|
66 |
+
]
|
67 |
+
}
|
userFeedbackStore.js
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class UserFeedbackStore {
|
2 |
+
constructor() {
|
3 |
+
this.dbName = 'ClipTaggerDB';
|
4 |
+
this.version = 1;
|
5 |
+
this.db = null;
|
6 |
+
}
|
7 |
+
|
8 |
+
async initialize() {
|
9 |
+
return new Promise((resolve, reject) => {
|
10 |
+
const request = indexedDB.open(this.dbName, this.version);
|
11 |
+
|
12 |
+
request.onerror = () => reject(request.error);
|
13 |
+
request.onsuccess = () => {
|
14 |
+
this.db = request.result;
|
15 |
+
resolve();
|
16 |
+
};
|
17 |
+
|
18 |
+
request.onupgradeneeded = (event) => {
|
19 |
+
const db = event.target.result;
|
20 |
+
|
21 |
+
// Create object stores
|
22 |
+
if (!db.objectStoreNames.contains('audioFeedback')) {
|
23 |
+
const audioStore = db.createObjectStore('audioFeedback', {
|
24 |
+
keyPath: 'id',
|
25 |
+
autoIncrement: true
|
26 |
+
});
|
27 |
+
audioStore.createIndex('timestamp', 'timestamp', { unique: false });
|
28 |
+
}
|
29 |
+
|
30 |
+
if (!db.objectStoreNames.contains('tagFeedback')) {
|
31 |
+
const tagStore = db.createObjectStore('tagFeedback', {
|
32 |
+
keyPath: 'id',
|
33 |
+
autoIncrement: true
|
34 |
+
});
|
35 |
+
tagStore.createIndex('tag', 'tag', { unique: false });
|
36 |
+
tagStore.createIndex('timestamp', 'timestamp', { unique: false });
|
37 |
+
}
|
38 |
+
|
39 |
+
if (!db.objectStoreNames.contains('customTags')) {
|
40 |
+
const customTagStore = db.createObjectStore('customTags', {
|
41 |
+
keyPath: 'tag'
|
42 |
+
});
|
43 |
+
customTagStore.createIndex('usage', 'usage', { unique: false });
|
44 |
+
}
|
45 |
+
};
|
46 |
+
});
|
47 |
+
}
|
48 |
+
|
49 |
+
async saveAudioFeedback(audioHash, originalTags, correctedTags, audioFeatures) {
|
50 |
+
if (!this.db) await this.initialize();
|
51 |
+
|
52 |
+
const transaction = this.db.transaction(['audioFeedback'], 'readwrite');
|
53 |
+
const store = transaction.objectStore('audioFeedback');
|
54 |
+
|
55 |
+
const feedback = {
|
56 |
+
audioHash,
|
57 |
+
originalTags,
|
58 |
+
correctedTags,
|
59 |
+
audioFeatures,
|
60 |
+
timestamp: Date.now()
|
61 |
+
};
|
62 |
+
|
63 |
+
return new Promise((resolve, reject) => {
|
64 |
+
const request = store.add(feedback);
|
65 |
+
request.onsuccess = () => resolve(request.result);
|
66 |
+
request.onerror = () => reject(request.error);
|
67 |
+
});
|
68 |
+
}
|
69 |
+
|
70 |
+
async saveTagFeedback(tag, feedback, audioHash) {
|
71 |
+
if (!this.db) await this.initialize();
|
72 |
+
|
73 |
+
const transaction = this.db.transaction(['tagFeedback'], 'readwrite');
|
74 |
+
const store = transaction.objectStore('tagFeedback');
|
75 |
+
|
76 |
+
const tagFeedback = {
|
77 |
+
tag,
|
78 |
+
feedback, // 'positive', 'negative', or 'custom'
|
79 |
+
audioHash,
|
80 |
+
timestamp: Date.now()
|
81 |
+
};
|
82 |
+
|
83 |
+
return new Promise((resolve, reject) => {
|
84 |
+
const request = store.add(tagFeedback);
|
85 |
+
request.onsuccess = () => resolve(request.result);
|
86 |
+
request.onerror = () => reject(request.error);
|
87 |
+
});
|
88 |
+
}
|
89 |
+
|
90 |
+
async saveCustomTag(tag) {
|
91 |
+
if (!this.db) await this.initialize();
|
92 |
+
|
93 |
+
const transaction = this.db.transaction(['customTags'], 'readwrite');
|
94 |
+
const store = transaction.objectStore('customTags');
|
95 |
+
|
96 |
+
return new Promise((resolve, reject) => {
|
97 |
+
const getRequest = store.get(tag);
|
98 |
+
getRequest.onsuccess = () => {
|
99 |
+
const existing = getRequest.result;
|
100 |
+
const tagData = existing ?
|
101 |
+
{ ...existing, usage: existing.usage + 1 } :
|
102 |
+
{ tag, usage: 1, timestamp: Date.now() };
|
103 |
+
|
104 |
+
const putRequest = store.put(tagData);
|
105 |
+
putRequest.onsuccess = () => resolve(putRequest.result);
|
106 |
+
putRequest.onerror = () => reject(putRequest.error);
|
107 |
+
};
|
108 |
+
getRequest.onerror = () => reject(getRequest.error);
|
109 |
+
});
|
110 |
+
}
|
111 |
+
|
112 |
+
async getCustomTags(limit = 20) {
|
113 |
+
if (!this.db) await this.initialize();
|
114 |
+
|
115 |
+
const transaction = this.db.transaction(['customTags'], 'readonly');
|
116 |
+
const store = transaction.objectStore('customTags');
|
117 |
+
const index = store.index('usage');
|
118 |
+
|
119 |
+
return new Promise((resolve, reject) => {
|
120 |
+
const request = index.openCursor(null, 'prev'); // Descending order
|
121 |
+
const results = [];
|
122 |
+
|
123 |
+
request.onsuccess = (event) => {
|
124 |
+
const cursor = event.target.result;
|
125 |
+
if (cursor && results.length < limit) {
|
126 |
+
results.push(cursor.value);
|
127 |
+
cursor.continue();
|
128 |
+
} else {
|
129 |
+
resolve(results);
|
130 |
+
}
|
131 |
+
};
|
132 |
+
request.onerror = () => reject(request.error);
|
133 |
+
});
|
134 |
+
}
|
135 |
+
|
136 |
+
async getTagFeedback(tag = null) {
|
137 |
+
if (!this.db) await this.initialize();
|
138 |
+
|
139 |
+
const transaction = this.db.transaction(['tagFeedback'], 'readonly');
|
140 |
+
const store = transaction.objectStore('tagFeedback');
|
141 |
+
|
142 |
+
return new Promise((resolve, reject) => {
|
143 |
+
let request;
|
144 |
+
if (tag) {
|
145 |
+
const index = store.index('tag');
|
146 |
+
request = index.getAll(tag);
|
147 |
+
} else {
|
148 |
+
request = store.getAll();
|
149 |
+
}
|
150 |
+
|
151 |
+
request.onsuccess = () => resolve(request.result);
|
152 |
+
request.onerror = () => reject(request.error);
|
153 |
+
});
|
154 |
+
}
|
155 |
+
|
156 |
+
async getAudioFeedback(limit = 100) {
|
157 |
+
if (!this.db) await this.initialize();
|
158 |
+
|
159 |
+
const transaction = this.db.transaction(['audioFeedback'], 'readonly');
|
160 |
+
const store = transaction.objectStore('audioFeedback');
|
161 |
+
const index = store.index('timestamp');
|
162 |
+
|
163 |
+
return new Promise((resolve, reject) => {
|
164 |
+
const request = index.openCursor(null, 'prev'); // Most recent first
|
165 |
+
const results = [];
|
166 |
+
|
167 |
+
request.onsuccess = (event) => {
|
168 |
+
const cursor = event.target.result;
|
169 |
+
if (cursor && results.length < limit) {
|
170 |
+
results.push(cursor.value);
|
171 |
+
cursor.continue();
|
172 |
+
} else {
|
173 |
+
resolve(results);
|
174 |
+
}
|
175 |
+
};
|
176 |
+
request.onerror = () => reject(request.error);
|
177 |
+
});
|
178 |
+
}
|
179 |
+
|
180 |
+
// Generate a simple hash for audio content
|
181 |
+
async hashAudioFile(file) {
|
182 |
+
const arrayBuffer = await file.arrayBuffer();
|
183 |
+
const hashBuffer = await crypto.subtle.digest('SHA-256', arrayBuffer);
|
184 |
+
const hashArray = Array.from(new Uint8Array(hashBuffer));
|
185 |
+
return hashArray.map(b => b.toString(16).padStart(2, '0')).join('').substring(0, 16);
|
186 |
+
}
|
187 |
+
|
188 |
+
async clearAllData() {
|
189 |
+
if (!this.db) await this.initialize();
|
190 |
+
|
191 |
+
const transaction = this.db.transaction(['audioFeedback', 'tagFeedback', 'customTags'], 'readwrite');
|
192 |
+
|
193 |
+
await Promise.all([
|
194 |
+
new Promise((resolve, reject) => {
|
195 |
+
const request = transaction.objectStore('audioFeedback').clear();
|
196 |
+
request.onsuccess = () => resolve();
|
197 |
+
request.onerror = () => reject(request.error);
|
198 |
+
}),
|
199 |
+
new Promise((resolve, reject) => {
|
200 |
+
const request = transaction.objectStore('tagFeedback').clear();
|
201 |
+
request.onsuccess = () => resolve();
|
202 |
+
request.onerror = () => reject(request.error);
|
203 |
+
}),
|
204 |
+
new Promise((resolve, reject) => {
|
205 |
+
const request = transaction.objectStore('customTags').clear();
|
206 |
+
request.onsuccess = () => resolve();
|
207 |
+
request.onerror = () => reject(request.error);
|
208 |
+
})
|
209 |
+
]);
|
210 |
+
}
|
211 |
+
}
|
212 |
+
|
213 |
+
export default UserFeedbackStore;
|