nazneen commited on
Commit
a5f1d95
·
1 Parent(s): 4a31635

model documentation

Browse files
Files changed (1) hide show
  1. README.md +172 -3
README.md CHANGED
@@ -1,3 +1,172 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ license: mit
3
+ tags:
4
+ - text-2-text-generation
5
+ ---
6
+
7
+
8
+ # Model Card for Key Phrase Transformer
9
+
10
+ # Model Details
11
+
12
+ ## Model Description
13
+
14
+ KeyPhraseTransformer lets you quickly extract key phrases, topics, themes from your text data with T5 transformer
15
+
16
+ - **Developed by:** Shivanand Roy
17
+ - **Shared by [Optional]:** Shivanand Roy
18
+ - **Model type:** Text2Text Generation
19
+ - **Language(s) (NLP):** More information needed
20
+ - **License:** MIT
21
+ - **Parent Model:** T5
22
+ - **Resources for more information:**
23
+ - [GitHub Repo](https://github.com/Shivanandroy/KeyPhraseTransformer)
24
+ - [Blog Post](https://snrspeaks.medium.com/keyphrasetransformer-quickly-extract-keyphrases-topics-from-text-documents-with-t5-transformer-dfb819716c23)
25
+
26
+
27
+
28
+ # Uses
29
+
30
+
31
+ ## Direct Use
32
+ This model can be used for the task of text2text generation.
33
+
34
+ ## Downstream Use [Optional]
35
+
36
+ More information needed.
37
+
38
+ ## Out-of-Scope Use
39
+
40
+ The model should not be used to intentionally create hostile or alienating environments for people.
41
+
42
+ # Bias, Risks, and Limitations
43
+
44
+
45
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
46
+
47
+
48
+
49
+ ## Recommendations
50
+
51
+
52
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
53
+
54
+ # Training Details
55
+
56
+ ## Training Data
57
+
58
+ The model authors notes in the [GitHub Repo](https://github.com/Shivanandroy/KeyPhraseTransformer):
59
+ > Trained on 500,000 training samples
60
+
61
+ ## Training Procedure
62
+
63
+
64
+ ### Preprocessing
65
+
66
+ More information needed
67
+
68
+
69
+ ### Speeds, Sizes, Times
70
+ More information needed
71
+
72
+
73
+ # Evaluation
74
+
75
+
76
+ ## Testing Data, Factors & Metrics
77
+
78
+ ### Testing Data
79
+
80
+ More information needed
81
+
82
+
83
+ ### Factors
84
+ More information needed
85
+
86
+ ### Metrics
87
+
88
+ More information needed
89
+
90
+
91
+ ## Results
92
+
93
+ More information needed
94
+
95
+
96
+ # Model Examination
97
+
98
+ More information needed
99
+
100
+ # Environmental Impact
101
+
102
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
103
+
104
+ - **Hardware Type:** More information needed
105
+ - **Hours used:** More information needed
106
+ - **Cloud Provider:** More information needed
107
+ - **Compute Region:** More information needed
108
+ - **Carbon Emitted:** More information needed
109
+
110
+ # Technical Specifications [optional]
111
+
112
+ ## Model Architecture and Objective
113
+
114
+ More information needed
115
+
116
+ ## Compute Infrastructure
117
+
118
+ More information needed
119
+
120
+ ### Hardware
121
+
122
+
123
+ More information needed
124
+
125
+ ### Software
126
+
127
+ More information needed.
128
+
129
+ # Citation
130
+
131
+
132
+ **BibTeX:**
133
+
134
+
135
+ More information needed.
136
+
137
+
138
+
139
+
140
+ # Glossary [optional]
141
+ More information needed
142
+
143
+ # More Information [optional]
144
+ More information needed
145
+
146
+
147
+ # Model Card Authors [optional]
148
+
149
+ Shivanand Roy in collaboration with Ezi Ozoani and the Hugging Face team
150
+
151
+
152
+ # Model Card Contact
153
+
154
+ More information needed
155
+
156
+ # How to Get Started with the Model
157
+
158
+ Use the code below to get started with the model.
159
+
160
+ <details>
161
+ <summary> Click to expand </summary>
162
+
163
+ ```python
164
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
165
+
166
+ tokenizer = AutoTokenizer.from_pretrained("snrspeaks/KeyPhraseTransformer")
167
+
168
+ model = AutoModelForSeq2SeqLM.from_pretrained("snrspeaks/KeyPhraseTransformer")
169
+ ```
170
+ </details>
171
+
172
+