--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: f7a9fbea-d994-4e0e-bfbf-06206445ed8f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 32799483a740097f_train_data.json ds_type: json format: custom path: /workspace/input_data/32799483a740097f_train_data.json type: field_input: gender field_instruction: en field_output: es format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: '{'''':torch.cuda.current_device()}' do_eval: true early_stopping_patience: 60 eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 64 gradient_checkpointing: true group_by_length: true hub_model_id: sn56m3/f7a9fbea-d994-4e0e-bfbf-06206445ed8f hub_repo: stevemonite hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 70GiB max_steps: 666 micro_batch_size: 1 mlflow_experiment_name: /tmp/32799483a740097f_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: w2k6 wandb_runid: null warmup_raio: 0.03 warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: null ```

# f7a9fbea-d994-4e0e-bfbf-06206445ed8f This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 33 - training_steps: 666 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6422 | 0.0008 | 1 | 3.9106 | | 0.8483 | 0.0211 | 25 | 1.0149 | | 0.7166 | 0.0422 | 50 | 0.9550 | | 0.7464 | 0.0633 | 75 | 0.9110 | | 0.821 | 0.0844 | 100 | 0.9160 | | 0.6771 | 0.1055 | 125 | 0.9025 | | 0.7014 | 0.1266 | 150 | 0.8940 | | 0.6945 | 0.1477 | 175 | 0.8904 | | 0.728 | 0.1688 | 200 | 0.8883 | | 0.6273 | 0.1898 | 225 | 0.8844 | | 0.7142 | 0.2109 | 250 | 0.8767 | | 0.7023 | 0.2320 | 275 | 0.8791 | | 0.7075 | 0.2531 | 300 | 0.8649 | | 0.6953 | 0.2742 | 325 | 0.8715 | | 0.6841 | 0.2953 | 350 | 0.8684 | | 0.6334 | 0.3164 | 375 | 0.8652 | | 0.7264 | 0.3375 | 400 | 0.8651 | | 0.669 | 0.3586 | 425 | 0.8657 | | 0.67 | 0.3797 | 450 | 0.8620 | | 0.6409 | 0.4008 | 475 | 0.8569 | | 0.6531 | 0.4219 | 500 | 0.8557 | | 0.6698 | 0.4430 | 525 | 0.8561 | | 0.7231 | 0.4641 | 550 | 0.8552 | | 0.6126 | 0.4852 | 575 | 0.8560 | | 0.647 | 0.5063 | 600 | 0.8546 | | 0.689 | 0.5273 | 625 | 0.8545 | | 0.7106 | 0.5484 | 650 | 0.8542 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1