Fixed readme
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ tags:
|
|
7 |
---
|
8 |
|
9 |
<p align="center">
|
10 |
-
<img alt="gpt-oss-
|
11 |
</p>
|
12 |
|
13 |
<p align="center">
|
@@ -22,14 +22,14 @@ tags:
|
|
22 |
Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
|
23 |
|
24 |
We’re releasing two flavors of these open models:
|
25 |
-
- `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single
|
26 |
- `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
|
27 |
|
28 |
Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
|
29 |
|
30 |
|
31 |
> [!NOTE]
|
32 |
-
> This model card is dedicated to the
|
33 |
|
34 |
# Highlights
|
35 |
|
@@ -38,7 +38,7 @@ Both models were trained on our [harmony response format](https://github.com/ope
|
|
38 |
* **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
|
39 |
* **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
|
40 |
* **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
|
41 |
-
* **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single
|
42 |
|
43 |
---
|
44 |
|
@@ -60,7 +60,7 @@ Once, setup you can proceed to run the model by running the snippet below:
|
|
60 |
from transformers import pipeline
|
61 |
import torch
|
62 |
|
63 |
-
model_id = "openai/gpt-oss-
|
64 |
|
65 |
pipe = pipeline(
|
66 |
"text-generation",
|
@@ -84,7 +84,7 @@ Alternatively, you can run the model via [`Transformers Serve`](https://huggingf
|
|
84 |
|
85 |
```
|
86 |
transformers serve
|
87 |
-
transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-
|
88 |
```
|
89 |
|
90 |
[Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
|
@@ -99,7 +99,7 @@ uv pip install --pre vllm==0.10.1+gptoss \
|
|
99 |
--extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
|
100 |
--index-strategy unsafe-best-match
|
101 |
|
102 |
-
vllm serve openai/gpt-oss-
|
103 |
```
|
104 |
|
105 |
[Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
|
@@ -113,9 +113,9 @@ To learn about how to use this model with PyTorch and Triton, check out our [ref
|
|
113 |
If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
|
114 |
|
115 |
```bash
|
116 |
-
# gpt-oss-
|
117 |
-
ollama pull gpt-oss:
|
118 |
-
ollama run gpt-oss:
|
119 |
```
|
120 |
|
121 |
[Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
|
@@ -125,8 +125,8 @@ ollama run gpt-oss:120b
|
|
125 |
If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
|
126 |
|
127 |
```bash
|
128 |
-
# gpt-oss-
|
129 |
-
lms get openai/gpt-oss-
|
130 |
```
|
131 |
|
132 |
Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
|
@@ -138,8 +138,8 @@ Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome
|
|
138 |
You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
|
139 |
|
140 |
```shell
|
141 |
-
# gpt-oss-
|
142 |
-
huggingface-cli download openai/gpt-oss-
|
143 |
pip install gpt-oss
|
144 |
python -m gpt_oss.chat model/
|
145 |
```
|
@@ -165,4 +165,4 @@ The gpt-oss models are excellent for:
|
|
165 |
|
166 |
Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
|
167 |
|
168 |
-
This
|
|
|
7 |
---
|
8 |
|
9 |
<p align="center">
|
10 |
+
<img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg">
|
11 |
</p>
|
12 |
|
13 |
<p align="center">
|
|
|
22 |
Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
|
23 |
|
24 |
We’re releasing two flavors of these open models:
|
25 |
+
- `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters)
|
26 |
- `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
|
27 |
|
28 |
Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
|
29 |
|
30 |
|
31 |
> [!NOTE]
|
32 |
+
> This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model.
|
33 |
|
34 |
# Highlights
|
35 |
|
|
|
38 |
* **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
|
39 |
* **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
|
40 |
* **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
|
41 |
+
* **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory.
|
42 |
|
43 |
---
|
44 |
|
|
|
60 |
from transformers import pipeline
|
61 |
import torch
|
62 |
|
63 |
+
model_id = "openai/gpt-oss-20b"
|
64 |
|
65 |
pipe = pipeline(
|
66 |
"text-generation",
|
|
|
84 |
|
85 |
```
|
86 |
transformers serve
|
87 |
+
transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b
|
88 |
```
|
89 |
|
90 |
[Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
|
|
|
99 |
--extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
|
100 |
--index-strategy unsafe-best-match
|
101 |
|
102 |
+
vllm serve openai/gpt-oss-20b
|
103 |
```
|
104 |
|
105 |
[Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
|
|
|
113 |
If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
|
114 |
|
115 |
```bash
|
116 |
+
# gpt-oss-20b
|
117 |
+
ollama pull gpt-oss:20b
|
118 |
+
ollama run gpt-oss:20b
|
119 |
```
|
120 |
|
121 |
[Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
|
|
|
125 |
If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
|
126 |
|
127 |
```bash
|
128 |
+
# gpt-oss-20b
|
129 |
+
lms get openai/gpt-oss-20b
|
130 |
```
|
131 |
|
132 |
Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
|
|
|
138 |
You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
|
139 |
|
140 |
```shell
|
141 |
+
# gpt-oss-20b
|
142 |
+
huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/
|
143 |
pip install gpt-oss
|
144 |
python -m gpt_oss.chat model/
|
145 |
```
|
|
|
165 |
|
166 |
Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
|
167 |
|
168 |
+
This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node.
|