--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-Small-24B-Instruct-2501 tags: - generated_from_trainer datasets: - data/data.jsonl model-index: - name: output results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.1` ```yaml base_model: mistralai/Mistral-Small-24B-Instruct-2501 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer model_config: trust_remote_code: true tokenizer: pad_token: "" padding_side: "right" add_bos_token: true add_eos_token: false datasets: - path: data/data.jsonl type: chat_template chat_template_strategy: tokenizer field_messages: conversations message_property_mappings: role: role content: content roles: user: ["user"] assistant: ["assistant"] system: ["system"] load_in_4bit: true adapter: qlora lora_r: 64 lora_alpha: 32 lora_dropout: 0.1 lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj bf16: true flash_attention: true gradient_checkpointing: true deepspeed: deepspeed_configs/zero2.json gradient_accumulation_steps: 4 micro_batch_size: 8 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 3e-6 warmup_ratio: 0.02 max_seq_length: 8192 pad_to_sequence_len: true sample_packing: true max_grad_norm: 1.0 output_dir: ./output save_steps: 100 logging_steps: 10 save_safetensors: true special_tokens: pad_token: "" ```

# output This model is a fine-tuned version of [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) on the data/data.jsonl dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 6 - num_epochs: 3.0 ### Training results ### Framework versions - PEFT 0.15.1 - Transformers 4.51.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1