skzxjus commited on
Commit
5ee471c
·
verified ·
1 Parent(s): 33deef1

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Math-7B
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-7B-Simple-RL
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-7B-Simple-RL
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="skzxjus/Qwen-2.5-7B-Simple-RL", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/llmsft/huggingface/runs/6er3kbh6)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.036631251517900455,
4
+ "train_runtime": 117440.362,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.064,
7
+ "train_steps_per_second": 0.004
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:935b6fb3bf17069614040a9860e85d1ff2b89d6837626e43c1a5aa4b2bc94c63
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63b858a7499543d98484c54b6731a8c49e94dd3a3fc9a112f4c3894be898d517
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb3e56a2a0f10beec9e06e594688b922d8e8da42429c7bbfb28f7486f1c573ba
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a494c67e2978f79d97857480b1a29dcf6507204e7fe0498221b4e713731e269d
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.036631251517900455,
4
+ "train_runtime": 117440.362,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.064,
7
+ "train_steps_per_second": 0.004
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984,
5
+ "eval_steps": 100,
6
+ "global_step": 468,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 631.1214530944824,
13
+ "epoch": 0.010666666666666666,
14
+ "grad_norm": 0.6909348368644714,
15
+ "kl": 0.00010949373245239258,
16
+ "learning_rate": 3.1914893617021275e-07,
17
+ "loss": 0.0,
18
+ "reward": 1.1349456831812859,
19
+ "reward_std": 0.8583761740475893,
20
+ "rewards/accuracy_reward": 0.5839285984635353,
21
+ "rewards/cosine_scaled_reward": 0.28554085849318656,
22
+ "rewards/format_reward": 0.001785714365541935,
23
+ "rewards/reasoning_steps_reward": 0.26369049251079557,
24
+ "step": 5
25
+ },
26
+ {
27
+ "completion_length": 624.9053833007813,
28
+ "epoch": 0.021333333333333333,
29
+ "grad_norm": 1.4107904434204102,
30
+ "kl": 0.00033826828002929686,
31
+ "learning_rate": 6.382978723404255e-07,
32
+ "loss": 0.0,
33
+ "reward": 1.226787830889225,
34
+ "reward_std": 0.8526847071945667,
35
+ "rewards/accuracy_reward": 0.623214316368103,
36
+ "rewards/cosine_scaled_reward": 0.3333354140922893,
37
+ "rewards/format_reward": 0.0,
38
+ "rewards/reasoning_steps_reward": 0.2702381147071719,
39
+ "step": 10
40
+ },
41
+ {
42
+ "completion_length": 604.6678848266602,
43
+ "epoch": 0.032,
44
+ "grad_norm": 2.2000041007995605,
45
+ "kl": 0.0002985477447509766,
46
+ "learning_rate": 9.574468085106384e-07,
47
+ "loss": 0.0,
48
+ "reward": 1.345777890086174,
49
+ "reward_std": 0.7787790141999722,
50
+ "rewards/accuracy_reward": 0.6839286014437675,
51
+ "rewards/cosine_scaled_reward": 0.35946831991896033,
52
+ "rewards/format_reward": 0.0,
53
+ "rewards/reasoning_steps_reward": 0.3023809714242816,
54
+ "step": 15
55
+ },
56
+ {
57
+ "completion_length": 616.6214538574219,
58
+ "epoch": 0.042666666666666665,
59
+ "grad_norm": 2.0853445529937744,
60
+ "kl": 0.0005875349044799805,
61
+ "learning_rate": 1.276595744680851e-06,
62
+ "loss": 0.0,
63
+ "reward": 1.189492864906788,
64
+ "reward_std": 0.7714623443782329,
65
+ "rewards/accuracy_reward": 0.6446428891271353,
66
+ "rewards/cosine_scaled_reward": 0.3246118599548936,
67
+ "rewards/format_reward": 0.0,
68
+ "rewards/reasoning_steps_reward": 0.2202381099574268,
69
+ "step": 20
70
+ },
71
+ {
72
+ "completion_length": 625.9143142700195,
73
+ "epoch": 0.05333333333333334,
74
+ "grad_norm": 0.7545832991600037,
75
+ "kl": 0.001489543914794922,
76
+ "learning_rate": 1.5957446808510639e-06,
77
+ "loss": 0.0001,
78
+ "reward": 1.2568627644330264,
79
+ "reward_std": 0.7405834712088109,
80
+ "rewards/accuracy_reward": 0.6482143104076385,
81
+ "rewards/cosine_scaled_reward": 0.3449579537729733,
82
+ "rewards/format_reward": 0.0,
83
+ "rewards/reasoning_steps_reward": 0.263690494094044,
84
+ "step": 25
85
+ },
86
+ {
87
+ "completion_length": 645.5393142700195,
88
+ "epoch": 0.064,
89
+ "grad_norm": 0.6036539077758789,
90
+ "kl": 0.0018674850463867188,
91
+ "learning_rate": 1.9148936170212767e-06,
92
+ "loss": 0.0001,
93
+ "reward": 1.389559542015195,
94
+ "reward_std": 0.7100211177021265,
95
+ "rewards/accuracy_reward": 0.7000000335276126,
96
+ "rewards/cosine_scaled_reward": 0.39848807696253064,
97
+ "rewards/format_reward": 0.0,
98
+ "rewards/reasoning_steps_reward": 0.2910714516416192,
99
+ "step": 30
100
+ },
101
+ {
102
+ "completion_length": 643.8160987854004,
103
+ "epoch": 0.07466666666666667,
104
+ "grad_norm": 2.453434944152832,
105
+ "kl": 0.004115867614746094,
106
+ "learning_rate": 2.2340425531914894e-06,
107
+ "loss": 0.0002,
108
+ "reward": 1.3226542802527548,
109
+ "reward_std": 0.6742276091128587,
110
+ "rewards/accuracy_reward": 0.6857143167406321,
111
+ "rewards/cosine_scaled_reward": 0.3619399464019807,
112
+ "rewards/format_reward": 0.0,
113
+ "rewards/reasoning_steps_reward": 0.275000019185245,
114
+ "step": 35
115
+ },
116
+ {
117
+ "completion_length": 657.0893188476563,
118
+ "epoch": 0.08533333333333333,
119
+ "grad_norm": 0.46775656938552856,
120
+ "kl": 0.002264881134033203,
121
+ "learning_rate": 2.553191489361702e-06,
122
+ "loss": 0.0001,
123
+ "reward": 1.475758495926857,
124
+ "reward_std": 0.7186904706060886,
125
+ "rewards/accuracy_reward": 0.710714315623045,
126
+ "rewards/cosine_scaled_reward": 0.41266319632995874,
127
+ "rewards/format_reward": 0.0,
128
+ "rewards/reasoning_steps_reward": 0.3523809779435396,
129
+ "step": 40
130
+ },
131
+ {
132
+ "completion_length": 632.8946701049805,
133
+ "epoch": 0.096,
134
+ "grad_norm": 0.7844781279563904,
135
+ "kl": 0.0034459114074707033,
136
+ "learning_rate": 2.872340425531915e-06,
137
+ "loss": 0.0001,
138
+ "reward": 1.5175182670354843,
139
+ "reward_std": 0.7221973031759262,
140
+ "rewards/accuracy_reward": 0.7196428939700127,
141
+ "rewards/cosine_scaled_reward": 0.42585154054686425,
142
+ "rewards/format_reward": 0.0,
143
+ "rewards/reasoning_steps_reward": 0.3720238355919719,
144
+ "step": 45
145
+ },
146
+ {
147
+ "completion_length": 643.4964591979981,
148
+ "epoch": 0.10666666666666667,
149
+ "grad_norm": 0.7251370549201965,
150
+ "kl": 0.004925918579101562,
151
+ "learning_rate": 2.9996241442585123e-06,
152
+ "loss": 0.0002,
153
+ "reward": 1.4811092048883439,
154
+ "reward_std": 0.7391483150422573,
155
+ "rewards/accuracy_reward": 0.6875000253319741,
156
+ "rewards/cosine_scaled_reward": 0.39063297407701614,
157
+ "rewards/format_reward": 0.0,
158
+ "rewards/reasoning_steps_reward": 0.40297621972858905,
159
+ "step": 50
160
+ },
161
+ {
162
+ "completion_length": 652.8803886413574,
163
+ "epoch": 0.11733333333333333,
164
+ "grad_norm": 0.6968328356742859,
165
+ "kl": 0.005688285827636719,
166
+ "learning_rate": 2.9973279301399446e-06,
167
+ "loss": 0.0002,
168
+ "reward": 1.4968807369470596,
169
+ "reward_std": 0.7624544829130173,
170
+ "rewards/accuracy_reward": 0.6803571686148644,
171
+ "rewards/cosine_scaled_reward": 0.3891425724606961,
172
+ "rewards/format_reward": 0.0,
173
+ "rewards/reasoning_steps_reward": 0.427380982413888,
174
+ "step": 55
175
+ },
176
+ {
177
+ "completion_length": 645.0214546203613,
178
+ "epoch": 0.128,
179
+ "grad_norm": 2.436361074447632,
180
+ "kl": 0.008457565307617187,
181
+ "learning_rate": 2.992947502998804e-06,
182
+ "loss": 0.0003,
183
+ "reward": 1.7154926896095275,
184
+ "reward_std": 0.7312843732535839,
185
+ "rewards/accuracy_reward": 0.7392857454717159,
186
+ "rewards/cosine_scaled_reward": 0.4434688203968108,
187
+ "rewards/format_reward": 0.0,
188
+ "rewards/reasoning_steps_reward": 0.532738133519888,
189
+ "step": 60
190
+ },
191
+ {
192
+ "completion_length": 647.5053848266601,
193
+ "epoch": 0.13866666666666666,
194
+ "grad_norm": 0.6552297472953796,
195
+ "kl": 0.012276077270507812,
196
+ "learning_rate": 2.9864889601923268e-06,
197
+ "loss": 0.0005,
198
+ "reward": 1.6644052103161813,
199
+ "reward_std": 0.7361363507807255,
200
+ "rewards/accuracy_reward": 0.6964286014437675,
201
+ "rewards/cosine_scaled_reward": 0.4126194438431412,
202
+ "rewards/format_reward": 0.0,
203
+ "rewards/reasoning_steps_reward": 0.5553571883589029,
204
+ "step": 65
205
+ },
206
+ {
207
+ "completion_length": 657.8196716308594,
208
+ "epoch": 0.14933333333333335,
209
+ "grad_norm": 0.43994271755218506,
210
+ "kl": 0.011707305908203125,
211
+ "learning_rate": 2.977961291721137e-06,
212
+ "loss": 0.0005,
213
+ "reward": 1.8486495822668076,
214
+ "reward_std": 0.7102579422295093,
215
+ "rewards/accuracy_reward": 0.7625000298023223,
216
+ "rewards/cosine_scaled_reward": 0.45876856660470366,
217
+ "rewards/format_reward": 0.0,
218
+ "rewards/reasoning_steps_reward": 0.6273810021579266,
219
+ "step": 70
220
+ },
221
+ {
222
+ "completion_length": 623.4339591979981,
223
+ "epoch": 0.16,
224
+ "grad_norm": 1.5503960847854614,
225
+ "kl": 0.01746063232421875,
226
+ "learning_rate": 2.9673763677155655e-06,
227
+ "loss": 0.0007,
228
+ "reward": 1.774902778863907,
229
+ "reward_std": 0.739626408368349,
230
+ "rewards/accuracy_reward": 0.7125000357627869,
231
+ "rewards/cosine_scaled_reward": 0.3999027090612799,
232
+ "rewards/format_reward": 0.0,
233
+ "rewards/reasoning_steps_reward": 0.6625000484287739,
234
+ "step": 75
235
+ },
236
+ {
237
+ "completion_length": 618.9946701049805,
238
+ "epoch": 0.17066666666666666,
239
+ "grad_norm": 0.509928822517395,
240
+ "kl": 0.01522216796875,
241
+ "learning_rate": 2.9547489219129666e-06,
242
+ "loss": 0.0006,
243
+ "reward": 1.8727758958935738,
244
+ "reward_std": 0.694974098354578,
245
+ "rewards/accuracy_reward": 0.7660714659839869,
246
+ "rewards/cosine_scaled_reward": 0.4501567647792399,
247
+ "rewards/format_reward": 0.0,
248
+ "rewards/reasoning_steps_reward": 0.6565476655960083,
249
+ "step": 80
250
+ },
251
+ {
252
+ "completion_length": 666.6053817749023,
253
+ "epoch": 0.18133333333333335,
254
+ "grad_norm": 0.9841728210449219,
255
+ "kl": 0.013214111328125,
256
+ "learning_rate": 2.9400965311490175e-06,
257
+ "loss": 0.0005,
258
+ "reward": 1.9131548389792443,
259
+ "reward_std": 0.6515475906431675,
260
+ "rewards/accuracy_reward": 0.7232143137603998,
261
+ "rewards/cosine_scaled_reward": 0.4464881077874452,
262
+ "rewards/format_reward": 0.0,
263
+ "rewards/reasoning_steps_reward": 0.7434524357318878,
264
+ "step": 85
265
+ },
266
+ {
267
+ "completion_length": 639.5339553833007,
268
+ "epoch": 0.192,
269
+ "grad_norm": 1.1210987567901611,
270
+ "kl": 0.01442108154296875,
271
+ "learning_rate": 2.9234395908915565e-06,
272
+ "loss": 0.0006,
273
+ "reward": 1.8604818418622018,
274
+ "reward_std": 0.6601141307502985,
275
+ "rewards/accuracy_reward": 0.6857143167406321,
276
+ "rewards/cosine_scaled_reward": 0.39738651625812055,
277
+ "rewards/format_reward": 0.001785714365541935,
278
+ "rewards/reasoning_steps_reward": 0.7755952969193458,
279
+ "step": 90
280
+ },
281
+ {
282
+ "completion_length": 646.3982467651367,
283
+ "epoch": 0.20266666666666666,
284
+ "grad_norm": 1.8718233108520508,
285
+ "kl": 0.017840576171875,
286
+ "learning_rate": 2.904801286851009e-06,
287
+ "loss": 0.0007,
288
+ "reward": 1.9381854191422463,
289
+ "reward_std": 0.60800197198987,
290
+ "rewards/accuracy_reward": 0.7071428872644901,
291
+ "rewards/cosine_scaled_reward": 0.4096139133675024,
292
+ "rewards/format_reward": 0.0,
293
+ "rewards/reasoning_steps_reward": 0.8214286342263222,
294
+ "step": 95
295
+ },
296
+ {
297
+ "completion_length": 602.1875228881836,
298
+ "epoch": 0.21333333333333335,
299
+ "grad_norm": 2.6090805530548096,
300
+ "kl": 0.02310333251953125,
301
+ "learning_rate": 2.884207562706925e-06,
302
+ "loss": 0.0009,
303
+ "reward": 2.1229332089424133,
304
+ "reward_std": 0.5944005899131298,
305
+ "rewards/accuracy_reward": 0.8000000335276127,
306
+ "rewards/cosine_scaled_reward": 0.49852837100625036,
307
+ "rewards/format_reward": 0.0,
308
+ "rewards/reasoning_steps_reward": 0.8244048207998276,
309
+ "step": 100
310
+ },
311
+ {
312
+ "epoch": 0.21333333333333335,
313
+ "eval_completion_length": 641.7788288208008,
314
+ "eval_kl": 0.0251678466796875,
315
+ "eval_loss": 0.0009895984549075365,
316
+ "eval_reward": 1.92431583173275,
317
+ "eval_reward_std": 0.6558538222849369,
318
+ "eval_rewards/accuracy_reward": 0.6669143144667149,
319
+ "eval_rewards/cosine_scaled_reward": 0.3816490911774221,
320
+ "eval_rewards/format_reward": 0.0001428571492433548,
321
+ "eval_rewards/reasoning_steps_reward": 0.8756095867991447,
322
+ "eval_runtime": 20717.2483,
323
+ "eval_samples_per_second": 0.241,
324
+ "eval_steps_per_second": 0.017,
325
+ "step": 100
326
+ },
327
+ {
328
+ "completion_length": 654.980387878418,
329
+ "epoch": 0.224,
330
+ "grad_norm": 0.7697030901908875,
331
+ "kl": 0.02506561279296875,
332
+ "learning_rate": 2.8616870839955444e-06,
333
+ "loss": 0.001,
334
+ "reward": 2.0908009231090547,
335
+ "reward_std": 0.6430241191759706,
336
+ "rewards/accuracy_reward": 0.7428571812808513,
337
+ "rewards/cosine_scaled_reward": 0.45687227630987765,
338
+ "rewards/format_reward": 0.0,
339
+ "rewards/reasoning_steps_reward": 0.8910714864730835,
340
+ "step": 105
341
+ },
342
+ {
343
+ "completion_length": 687.5053863525391,
344
+ "epoch": 0.23466666666666666,
345
+ "grad_norm": 1.5209710597991943,
346
+ "kl": 0.0304779052734375,
347
+ "learning_rate": 2.837271198208662e-06,
348
+ "loss": 0.0012,
349
+ "reward": 2.1170908212661743,
350
+ "reward_std": 0.6039011087268591,
351
+ "rewards/accuracy_reward": 0.7339286006987095,
352
+ "rewards/cosine_scaled_reward": 0.4647097608074546,
353
+ "rewards/format_reward": 0.0,
354
+ "rewards/reasoning_steps_reward": 0.9184524416923523,
355
+ "step": 110
356
+ },
357
+ {
358
+ "completion_length": 639.716096496582,
359
+ "epoch": 0.24533333333333332,
360
+ "grad_norm": 0.7531526684761047,
361
+ "kl": 0.0342376708984375,
362
+ "learning_rate": 2.8109938911593322e-06,
363
+ "loss": 0.0014,
364
+ "reward": 2.075811105966568,
365
+ "reward_std": 0.559355116635561,
366
+ "rewards/accuracy_reward": 0.7160714510828257,
367
+ "rewards/cosine_scaled_reward": 0.4240253158146515,
368
+ "rewards/format_reward": 0.0,
369
+ "rewards/reasoning_steps_reward": 0.9357143342494965,
370
+ "step": 115
371
+ },
372
+ {
373
+ "completion_length": 668.7660995483399,
374
+ "epoch": 0.256,
375
+ "grad_norm": 0.9209851026535034,
376
+ "kl": 0.0358154296875,
377
+ "learning_rate": 2.7828917396751474e-06,
378
+ "loss": 0.0015,
379
+ "reward": 2.127332517504692,
380
+ "reward_std": 0.601556234434247,
381
+ "rewards/accuracy_reward": 0.7267857434228062,
382
+ "rewards/cosine_scaled_reward": 0.4559038822539151,
383
+ "rewards/format_reward": 0.0,
384
+ "rewards/reasoning_steps_reward": 0.9446429044008255,
385
+ "step": 120
386
+ },
387
+ {
388
+ "completion_length": 676.3518180847168,
389
+ "epoch": 0.26666666666666666,
390
+ "grad_norm": 0.6511895060539246,
391
+ "kl": 0.0373077392578125,
392
+ "learning_rate": 2.753003860684943e-06,
393
+ "loss": 0.0015,
394
+ "reward": 2.2261758178472517,
395
+ "reward_std": 0.6260890623554587,
396
+ "rewards/accuracy_reward": 0.7714286014437676,
397
+ "rewards/cosine_scaled_reward": 0.5190328445285559,
398
+ "rewards/format_reward": 0.0,
399
+ "rewards/reasoning_steps_reward": 0.9357143476605415,
400
+ "step": 125
401
+ },
402
+ {
403
+ "completion_length": 692.8714576721192,
404
+ "epoch": 0.2773333333333333,
405
+ "grad_norm": 0.5059028267860413,
406
+ "kl": 0.0350311279296875,
407
+ "learning_rate": 2.721371856769793e-06,
408
+ "loss": 0.0014,
409
+ "reward": 2.102233949303627,
410
+ "reward_std": 0.6460967320948839,
411
+ "rewards/accuracy_reward": 0.7053571756929159,
412
+ "rewards/cosine_scaled_reward": 0.44271006155759096,
413
+ "rewards/format_reward": 0.0,
414
+ "rewards/reasoning_steps_reward": 0.9541667267680168,
415
+ "step": 130
416
+ },
417
+ {
418
+ "completion_length": 626.5982414245606,
419
+ "epoch": 0.288,
420
+ "grad_norm": 0.9745141863822937,
421
+ "kl": 0.0357391357421875,
422
+ "learning_rate": 2.688039758254093e-06,
423
+ "loss": 0.0014,
424
+ "reward": 2.290945905447006,
425
+ "reward_std": 0.566658615320921,
426
+ "rewards/accuracy_reward": 0.8071428859606385,
427
+ "rewards/cosine_scaled_reward": 0.5457077167928219,
428
+ "rewards/format_reward": 0.0,
429
+ "rewards/reasoning_steps_reward": 0.9380953028798104,
430
+ "step": 135
431
+ },
432
+ {
433
+ "completion_length": 647.5911033630371,
434
+ "epoch": 0.2986666666666667,
435
+ "grad_norm": 0.8204265236854553,
436
+ "kl": 0.0362335205078125,
437
+ "learning_rate": 2.65305396191733e-06,
438
+ "loss": 0.0014,
439
+ "reward": 2.1995943754911425,
440
+ "reward_std": 0.6815032918006182,
441
+ "rewards/accuracy_reward": 0.7678571723401546,
442
+ "rewards/cosine_scaled_reward": 0.5103085894137621,
443
+ "rewards/format_reward": 0.00357142873108387,
444
+ "rewards/reasoning_steps_reward": 0.9178572073578835,
445
+ "step": 140
446
+ },
447
+ {
448
+ "completion_length": 672.96967086792,
449
+ "epoch": 0.30933333333333335,
450
+ "grad_norm": 2.2863059043884277,
451
+ "kl": 0.0353759765625,
452
+ "learning_rate": 2.61646316641186e-06,
453
+ "loss": 0.0014,
454
+ "reward": 2.0759469985961916,
455
+ "reward_std": 0.706667598336935,
456
+ "rewards/accuracy_reward": 0.7125000339001417,
457
+ "rewards/cosine_scaled_reward": 0.4384469170589,
458
+ "rewards/format_reward": 0.0,
459
+ "rewards/reasoning_steps_reward": 0.9250000521540642,
460
+ "step": 145
461
+ },
462
+ {
463
+ "completion_length": 664.0589607238769,
464
+ "epoch": 0.32,
465
+ "grad_norm": 0.6098917722702026,
466
+ "kl": 0.0397186279296875,
467
+ "learning_rate": 2.5783183044765715e-06,
468
+ "loss": 0.0016,
469
+ "reward": 2.00558588206768,
470
+ "reward_std": 0.7086378004401922,
471
+ "rewards/accuracy_reward": 0.6821428902447224,
472
+ "rewards/cosine_scaled_reward": 0.4186810594052076,
473
+ "rewards/format_reward": 0.0,
474
+ "rewards/reasoning_steps_reward": 0.9047619655728341,
475
+ "step": 150
476
+ },
477
+ {
478
+ "completion_length": 674.0750328063965,
479
+ "epoch": 0.33066666666666666,
480
+ "grad_norm": 0.8959779739379883,
481
+ "kl": 0.050909423828125,
482
+ "learning_rate": 2.5386724720408135e-06,
483
+ "loss": 0.002,
484
+ "reward": 2.008633776009083,
485
+ "reward_std": 0.7557358780875802,
486
+ "rewards/accuracy_reward": 0.6803571756929159,
487
+ "rewards/cosine_scaled_reward": 0.437205099593848,
488
+ "rewards/format_reward": 0.001785714365541935,
489
+ "rewards/reasoning_steps_reward": 0.8892857730388641,
490
+ "step": 155
491
+ },
492
+ {
493
+ "completion_length": 670.244669342041,
494
+ "epoch": 0.3413333333333333,
495
+ "grad_norm": 0.5438752770423889,
496
+ "kl": 0.07694091796875,
497
+ "learning_rate": 2.49758085431725e-06,
498
+ "loss": 0.0031,
499
+ "reward": 1.9426198080182076,
500
+ "reward_std": 0.6488124974071979,
501
+ "rewards/accuracy_reward": 0.6803571708500386,
502
+ "rewards/cosine_scaled_reward": 0.39261971979867666,
503
+ "rewards/format_reward": 0.0,
504
+ "rewards/reasoning_steps_reward": 0.8696429163217545,
505
+ "step": 160
506
+ },
507
+ {
508
+ "completion_length": 705.6607482910156,
509
+ "epoch": 0.352,
510
+ "grad_norm": 1.0254724025726318,
511
+ "kl": 0.1366790771484375,
512
+ "learning_rate": 2.455100648986533e-06,
513
+ "loss": 0.0055,
514
+ "reward": 1.9435187339782716,
515
+ "reward_std": 0.74994295835495,
516
+ "rewards/accuracy_reward": 0.6660714631900191,
517
+ "rewards/cosine_scaled_reward": 0.4214948390610516,
518
+ "rewards/format_reward": 0.0,
519
+ "rewards/reasoning_steps_reward": 0.8559524461627006,
520
+ "step": 165
521
+ },
522
+ {
523
+ "completion_length": 703.3446784973145,
524
+ "epoch": 0.3626666666666667,
525
+ "grad_norm": 0.7715374231338501,
526
+ "kl": 0.13954315185546876,
527
+ "learning_rate": 2.4112909865807053e-06,
528
+ "loss": 0.0056,
529
+ "reward": 1.855338068306446,
530
+ "reward_std": 0.750602075085044,
531
+ "rewards/accuracy_reward": 0.6232143130153418,
532
+ "rewards/cosine_scaled_reward": 0.36545706654433163,
533
+ "rewards/format_reward": 0.0,
534
+ "rewards/reasoning_steps_reward": 0.8666667252779007,
535
+ "step": 170
536
+ },
537
+ {
538
+ "completion_length": 682.3285972595215,
539
+ "epoch": 0.37333333333333335,
540
+ "grad_norm": 0.6281430721282959,
541
+ "kl": 0.0823638916015625,
542
+ "learning_rate": 2.366212848176164e-06,
543
+ "loss": 0.0033,
544
+ "reward": 2.0821879684925078,
545
+ "reward_std": 0.6594970747828484,
546
+ "rewards/accuracy_reward": 0.7321428842842579,
547
+ "rewards/cosine_scaled_reward": 0.4786164700053632,
548
+ "rewards/format_reward": 0.0,
549
+ "rewards/reasoning_steps_reward": 0.8714286372065544,
550
+ "step": 175
551
+ },
552
+ {
553
+ "completion_length": 642.4875274658203,
554
+ "epoch": 0.384,
555
+ "grad_norm": 0.7311661243438721,
556
+ "kl": 0.0912109375,
557
+ "learning_rate": 2.319928980510752e-06,
558
+ "loss": 0.0036,
559
+ "reward": 2.176451873779297,
560
+ "reward_std": 0.666511994227767,
561
+ "rewards/accuracy_reward": 0.7696428835391999,
562
+ "rewards/cosine_scaled_reward": 0.509189874585718,
563
+ "rewards/format_reward": 0.0,
564
+ "rewards/reasoning_steps_reward": 0.8976191058754921,
565
+ "step": 180
566
+ },
567
+ {
568
+ "completion_length": 679.0821708679199,
569
+ "epoch": 0.39466666666666667,
570
+ "grad_norm": 0.4346056282520294,
571
+ "kl": 0.078515625,
572
+ "learning_rate": 2.272503808643123e-06,
573
+ "loss": 0.0031,
574
+ "reward": 2.01886305809021,
575
+ "reward_std": 0.6258400946855545,
576
+ "rewards/accuracy_reward": 0.6857143115252257,
577
+ "rewards/cosine_scaled_reward": 0.4248154018074274,
578
+ "rewards/format_reward": 0.0,
579
+ "rewards/reasoning_steps_reward": 0.9083333954215049,
580
+ "step": 185
581
+ },
582
+ {
583
+ "completion_length": 650.3928825378418,
584
+ "epoch": 0.4053333333333333,
585
+ "grad_norm": 0.444560706615448,
586
+ "kl": 0.0803558349609375,
587
+ "learning_rate": 2.2240033462759628e-06,
588
+ "loss": 0.0032,
589
+ "reward": 2.268611046671867,
590
+ "reward_std": 0.5309645187109708,
591
+ "rewards/accuracy_reward": 0.7857143092900515,
592
+ "rewards/cosine_scaled_reward": 0.5328966917470097,
593
+ "rewards/format_reward": 0.0,
594
+ "rewards/reasoning_steps_reward": 0.9500000566244126,
595
+ "step": 190
596
+ },
597
+ {
598
+ "completion_length": 702.928604888916,
599
+ "epoch": 0.416,
600
+ "grad_norm": 0.9547479748725891,
601
+ "kl": 0.112750244140625,
602
+ "learning_rate": 2.1744951038678905e-06,
603
+ "loss": 0.0045,
604
+ "reward": 2.1632190570235252,
605
+ "reward_std": 0.6817336268723011,
606
+ "rewards/accuracy_reward": 0.7214286040514708,
607
+ "rewards/cosine_scaled_reward": 0.4995284925447777,
608
+ "rewards/format_reward": 0.0,
609
+ "rewards/reasoning_steps_reward": 0.9422619566321373,
610
+ "step": 195
611
+ },
612
+ {
613
+ "completion_length": 703.4661041259766,
614
+ "epoch": 0.4266666666666667,
615
+ "grad_norm": 0.5146152973175049,
616
+ "kl": 0.1219329833984375,
617
+ "learning_rate": 2.124047994661941e-06,
618
+ "loss": 0.0049,
619
+ "reward": 2.1924852967262267,
620
+ "reward_std": 0.6154963219538331,
621
+ "rewards/accuracy_reward": 0.7410714585334063,
622
+ "rewards/cosine_scaled_reward": 0.5115328402258456,
623
+ "rewards/format_reward": 0.0,
624
+ "rewards/reasoning_steps_reward": 0.9398810029029846,
625
+ "step": 200
626
+ },
627
+ {
628
+ "epoch": 0.4266666666666667,
629
+ "eval_completion_length": 714.3101461914063,
630
+ "eval_kl": 0.1737868896484375,
631
+ "eval_loss": 0.006958193611353636,
632
+ "eval_reward": 1.9060095809578896,
633
+ "eval_reward_std": 0.7741354959219694,
634
+ "eval_rewards/accuracy_reward": 0.6149714575111866,
635
+ "eval_rewards/cosine_scaled_reward": 0.3717333221578854,
636
+ "eval_rewards/format_reward": 5.7142859697341916e-05,
637
+ "eval_rewards/reasoning_steps_reward": 0.9192476727962494,
638
+ "eval_runtime": 21483.7352,
639
+ "eval_samples_per_second": 0.233,
640
+ "eval_steps_per_second": 0.017,
641
+ "step": 200
642
+ },
643
+ {
644
+ "completion_length": 706.7518203735351,
645
+ "epoch": 0.43733333333333335,
646
+ "grad_norm": 1.068983793258667,
647
+ "kl": 0.21756591796875,
648
+ "learning_rate": 2.072732238761434e-06,
649
+ "loss": 0.0087,
650
+ "reward": 1.9650339633226395,
651
+ "reward_std": 0.8582378407940269,
652
+ "rewards/accuracy_reward": 0.6642857462167739,
653
+ "rewards/cosine_scaled_reward": 0.4174148519756272,
654
+ "rewards/format_reward": 0.0,
655
+ "rewards/reasoning_steps_reward": 0.8833333909511566,
656
+ "step": 205
657
+ },
658
+ {
659
+ "completion_length": 654.6446731567382,
660
+ "epoch": 0.448,
661
+ "grad_norm": 1.7271358966827393,
662
+ "kl": 0.1701934814453125,
663
+ "learning_rate": 2.0206192653867536e-06,
664
+ "loss": 0.0068,
665
+ "reward": 2.0717602521181107,
666
+ "reward_std": 0.771126739308238,
667
+ "rewards/accuracy_reward": 0.7446428872644901,
668
+ "rewards/cosine_scaled_reward": 0.4818792417878285,
669
+ "rewards/format_reward": 0.0,
670
+ "rewards/reasoning_steps_reward": 0.8452381536364555,
671
+ "step": 210
672
+ },
673
+ {
674
+ "completion_length": 730.1428932189941,
675
+ "epoch": 0.45866666666666667,
676
+ "grad_norm": 1.706314206123352,
677
+ "kl": 0.191485595703125,
678
+ "learning_rate": 1.967781613449095e-06,
679
+ "loss": 0.0077,
680
+ "reward": 1.8680204302072525,
681
+ "reward_std": 0.7623149130493403,
682
+ "rewards/accuracy_reward": 0.6267857406288385,
683
+ "rewards/cosine_scaled_reward": 0.37575842121150343,
684
+ "rewards/format_reward": 0.0,
685
+ "rewards/reasoning_steps_reward": 0.8654762491583824,
686
+ "step": 215
687
+ },
688
+ {
689
+ "completion_length": 706.8571807861329,
690
+ "epoch": 0.4693333333333333,
691
+ "grad_norm": 0.5565593838691711,
692
+ "kl": 0.1629547119140625,
693
+ "learning_rate": 1.9142928305795637e-06,
694
+ "loss": 0.0065,
695
+ "reward": 1.8906428053975106,
696
+ "reward_std": 0.7771835651248693,
697
+ "rewards/accuracy_reward": 0.651785746589303,
698
+ "rewards/cosine_scaled_reward": 0.3876665448769927,
699
+ "rewards/format_reward": 0.0,
700
+ "rewards/reasoning_steps_reward": 0.851190535724163,
701
+ "step": 220
702
+ },
703
+ {
704
+ "completion_length": 669.3768127441406,
705
+ "epoch": 0.48,
706
+ "grad_norm": 1.5649381875991821,
707
+ "kl": 0.17498779296875,
708
+ "learning_rate": 1.8602273707541886e-06,
709
+ "loss": 0.007,
710
+ "reward": 2.0173469945788383,
711
+ "reward_std": 0.8250991944223642,
712
+ "rewards/accuracy_reward": 0.7142857421189547,
713
+ "rewards/cosine_scaled_reward": 0.4477040659636259,
714
+ "rewards/format_reward": 0.0,
715
+ "rewards/reasoning_steps_reward": 0.8553571999073029,
716
+ "step": 225
717
+ },
718
+ {
719
+ "completion_length": 730.8518165588379,
720
+ "epoch": 0.49066666666666664,
721
+ "grad_norm": 0.5532453060150146,
722
+ "kl": 0.280194091796875,
723
+ "learning_rate": 1.8056604906573418e-06,
724
+ "loss": 0.0112,
725
+ "reward": 1.8200394719839097,
726
+ "reward_std": 0.9259789921343327,
727
+ "rewards/accuracy_reward": 0.6250000283122062,
728
+ "rewards/cosine_scaled_reward": 0.3718251186190173,
729
+ "rewards/format_reward": 0.0,
730
+ "rewards/reasoning_steps_reward": 0.8232143491506576,
731
+ "step": 230
732
+ },
733
+ {
734
+ "completion_length": 760.2411041259766,
735
+ "epoch": 0.5013333333333333,
736
+ "grad_norm": 0.5970042943954468,
737
+ "kl": 0.39481201171875,
738
+ "learning_rate": 1.7506681449278226e-06,
739
+ "loss": 0.0158,
740
+ "reward": 1.5480424344539643,
741
+ "reward_std": 1.0719380795955658,
742
+ "rewards/accuracy_reward": 0.5428571717813611,
743
+ "rewards/cosine_scaled_reward": 0.2676852141972631,
744
+ "rewards/format_reward": 0.0,
745
+ "rewards/reasoning_steps_reward": 0.7375000461935997,
746
+ "step": 235
747
+ },
748
+ {
749
+ "completion_length": 676.1571731567383,
750
+ "epoch": 0.512,
751
+ "grad_norm": 0.5172022581100464,
752
+ "kl": 0.1457733154296875,
753
+ "learning_rate": 1.6953268804334257e-06,
754
+ "loss": 0.0058,
755
+ "reward": 2.0531174913048744,
756
+ "reward_std": 0.7161804366856813,
757
+ "rewards/accuracy_reward": 0.7160714583471417,
758
+ "rewards/cosine_scaled_reward": 0.475736457714811,
759
+ "rewards/format_reward": 0.0,
760
+ "rewards/reasoning_steps_reward": 0.8613095909357071,
761
+ "step": 240
762
+ },
763
+ {
764
+ "completion_length": 622.910740661621,
765
+ "epoch": 0.5226666666666666,
766
+ "grad_norm": 0.4317789673805237,
767
+ "kl": 0.0579132080078125,
768
+ "learning_rate": 1.6397137297211436e-06,
769
+ "loss": 0.0023,
770
+ "reward": 2.1757386445999147,
771
+ "reward_std": 0.5802463456988335,
772
+ "rewards/accuracy_reward": 0.8035714585334063,
773
+ "rewards/cosine_scaled_reward": 0.5370481017976999,
774
+ "rewards/format_reward": 0.0,
775
+ "rewards/reasoning_steps_reward": 0.8351190999150276,
776
+ "step": 245
777
+ },
778
+ {
779
+ "completion_length": 657.0875282287598,
780
+ "epoch": 0.5333333333333333,
781
+ "grad_norm": 0.27897346019744873,
782
+ "kl": 0.04737091064453125,
783
+ "learning_rate": 1.5839061037913395e-06,
784
+ "loss": 0.0019,
785
+ "reward": 2.280982181429863,
786
+ "reward_std": 0.5807892467826605,
787
+ "rewards/accuracy_reward": 0.8142857417464257,
788
+ "rewards/cosine_scaled_reward": 0.5881249699741602,
789
+ "rewards/format_reward": 0.0,
790
+ "rewards/reasoning_steps_reward": 0.878571480512619,
791
+ "step": 250
792
+ },
793
+ {
794
+ "completion_length": 688.4482467651367,
795
+ "epoch": 0.544,
796
+ "grad_norm": 0.38000839948654175,
797
+ "kl": 0.04910125732421875,
798
+ "learning_rate": 1.527981684345115e-06,
799
+ "loss": 0.002,
800
+ "reward": 2.107425755262375,
801
+ "reward_std": 0.5918682970106601,
802
+ "rewards/accuracy_reward": 0.732142885401845,
803
+ "rewards/cosine_scaled_reward": 0.4669495075941086,
804
+ "rewards/format_reward": 0.0,
805
+ "rewards/reasoning_steps_reward": 0.9083334013819695,
806
+ "step": 255
807
+ },
808
+ {
809
+ "completion_length": 683.7750328063964,
810
+ "epoch": 0.5546666666666666,
811
+ "grad_norm": 0.3659621775150299,
812
+ "kl": 0.0616912841796875,
813
+ "learning_rate": 1.4720183156548855e-06,
814
+ "loss": 0.0025,
815
+ "reward": 2.2262755960226057,
816
+ "reward_std": 0.6095046918839216,
817
+ "rewards/accuracy_reward": 0.7500000275671482,
818
+ "rewards/cosine_scaled_reward": 0.534013625793159,
819
+ "rewards/format_reward": 0.0,
820
+ "rewards/reasoning_steps_reward": 0.9422619551420212,
821
+ "step": 260
822
+ },
823
+ {
824
+ "completion_length": 722.6518203735352,
825
+ "epoch": 0.5653333333333334,
826
+ "grad_norm": 3.2591984272003174,
827
+ "kl": 0.755340576171875,
828
+ "learning_rate": 1.4160938962086612e-06,
829
+ "loss": 0.0303,
830
+ "reward": 2.1296338394284247,
831
+ "reward_std": 0.5928221672773362,
832
+ "rewards/accuracy_reward": 0.7178571680560708,
833
+ "rewards/cosine_scaled_reward": 0.4814194705337286,
834
+ "rewards/format_reward": 0.0,
835
+ "rewards/reasoning_steps_reward": 0.9303571835160256,
836
+ "step": 265
837
+ },
838
+ {
839
+ "completion_length": 677.3678932189941,
840
+ "epoch": 0.576,
841
+ "grad_norm": 0.34547945857048035,
842
+ "kl": 0.084674072265625,
843
+ "learning_rate": 1.3602862702788567e-06,
844
+ "loss": 0.0034,
845
+ "reward": 2.200597658753395,
846
+ "reward_std": 0.625842222943902,
847
+ "rewards/accuracy_reward": 0.7589286014437675,
848
+ "rewards/cosine_scaled_reward": 0.5077404484152794,
849
+ "rewards/format_reward": 0.0,
850
+ "rewards/reasoning_steps_reward": 0.9339286297559738,
851
+ "step": 270
852
+ },
853
+ {
854
+ "completion_length": 678.8910987854003,
855
+ "epoch": 0.5866666666666667,
856
+ "grad_norm": 0.4450472593307495,
857
+ "kl": 0.090386962890625,
858
+ "learning_rate": 1.3046731195665748e-06,
859
+ "loss": 0.0036,
860
+ "reward": 2.2284871727228164,
861
+ "reward_std": 0.6351787287741899,
862
+ "rewards/accuracy_reward": 0.7607143148779869,
863
+ "rewards/cosine_scaled_reward": 0.533249006792903,
864
+ "rewards/format_reward": 0.0,
865
+ "rewards/reasoning_steps_reward": 0.9345238700509071,
866
+ "step": 275
867
+ },
868
+ {
869
+ "completion_length": 703.6821754455566,
870
+ "epoch": 0.5973333333333334,
871
+ "grad_norm": 0.4517715275287628,
872
+ "kl": 0.10860595703125,
873
+ "learning_rate": 1.2493318550721775e-06,
874
+ "loss": 0.0043,
875
+ "reward": 2.1768259733915327,
876
+ "reward_std": 0.5669930893927813,
877
+ "rewards/accuracy_reward": 0.7375000264495611,
878
+ "rewards/cosine_scaled_reward": 0.4982544435886666,
879
+ "rewards/format_reward": 0.0,
880
+ "rewards/reasoning_steps_reward": 0.9410714849829673,
881
+ "step": 280
882
+ },
883
+ {
884
+ "completion_length": 688.2607437133789,
885
+ "epoch": 0.608,
886
+ "grad_norm": 0.403906911611557,
887
+ "kl": 0.1100799560546875,
888
+ "learning_rate": 1.1943395093426585e-06,
889
+ "loss": 0.0044,
890
+ "reward": 2.2273842960596086,
891
+ "reward_std": 0.5660578895360231,
892
+ "rewards/accuracy_reward": 0.748214314877987,
893
+ "rewards/cosine_scaled_reward": 0.5327413596212864,
894
+ "rewards/format_reward": 0.0,
895
+ "rewards/reasoning_steps_reward": 0.9464286237955093,
896
+ "step": 285
897
+ },
898
+ {
899
+ "completion_length": 663.8607498168946,
900
+ "epoch": 0.6186666666666667,
901
+ "grad_norm": 0.7475197911262512,
902
+ "kl": 0.117352294921875,
903
+ "learning_rate": 1.1397726292458115e-06,
904
+ "loss": 0.0047,
905
+ "reward": 2.155428893864155,
906
+ "reward_std": 0.6302181664854288,
907
+ "rewards/accuracy_reward": 0.7303571704775095,
908
+ "rewards/cosine_scaled_reward": 0.5042383354157209,
909
+ "rewards/format_reward": 0.0,
910
+ "rewards/reasoning_steps_reward": 0.9208333924412727,
911
+ "step": 290
912
+ },
913
+ {
914
+ "completion_length": 711.130387878418,
915
+ "epoch": 0.6293333333333333,
916
+ "grad_norm": 18.6844539642334,
917
+ "kl": 0.360479736328125,
918
+ "learning_rate": 1.085707169420437e-06,
919
+ "loss": 0.0144,
920
+ "reward": 2.0090325683355332,
921
+ "reward_std": 0.6006665829569101,
922
+ "rewards/accuracy_reward": 0.6500000275671483,
923
+ "rewards/cosine_scaled_reward": 0.4364134394330904,
924
+ "rewards/format_reward": 0.0,
925
+ "rewards/reasoning_steps_reward": 0.9226190969347954,
926
+ "step": 295
927
+ },
928
+ {
929
+ "completion_length": 666.8428817749024,
930
+ "epoch": 0.64,
931
+ "grad_norm": 62.51573181152344,
932
+ "kl": 0.5435150146484375,
933
+ "learning_rate": 1.0322183865509054e-06,
934
+ "loss": 0.0217,
935
+ "reward": 2.2747762113809586,
936
+ "reward_std": 0.6328875336796045,
937
+ "rewards/accuracy_reward": 0.7982143104076386,
938
+ "rewards/cosine_scaled_reward": 0.5747761461883784,
939
+ "rewards/format_reward": 0.0,
940
+ "rewards/reasoning_steps_reward": 0.9017857685685158,
941
+ "step": 300
942
+ },
943
+ {
944
+ "epoch": 0.64,
945
+ "eval_completion_length": 689.4330311889648,
946
+ "eval_kl": 0.6253654296875,
947
+ "eval_loss": 0.024997977539896965,
948
+ "eval_reward": 2.0301740431547164,
949
+ "eval_reward_std": 0.6546256743520499,
950
+ "eval_rewards/accuracy_reward": 0.6642857430905104,
951
+ "eval_rewards/cosine_scaled_reward": 0.4451358726256585,
952
+ "eval_rewards/format_reward": 0.0,
953
+ "eval_rewards/reasoning_steps_reward": 0.9207524393320083,
954
+ "eval_runtime": 21121.621,
955
+ "eval_samples_per_second": 0.237,
956
+ "eval_steps_per_second": 0.017,
957
+ "step": 300
958
+ },
959
+ {
960
+ "completion_length": 677.9232406616211,
961
+ "epoch": 0.6506666666666666,
962
+ "grad_norm": 56.39460754394531,
963
+ "kl": 1.057305908203125,
964
+ "learning_rate": 9.793807346132464e-07,
965
+ "loss": 0.0423,
966
+ "reward": 2.1904526859521867,
967
+ "reward_std": 0.6557880196720361,
968
+ "rewards/accuracy_reward": 0.7589286021888256,
969
+ "rewards/cosine_scaled_reward": 0.5190240478143096,
970
+ "rewards/format_reward": 0.0,
971
+ "rewards/reasoning_steps_reward": 0.912500049173832,
972
+ "step": 305
973
+ },
974
+ {
975
+ "completion_length": 683.6518188476563,
976
+ "epoch": 0.6613333333333333,
977
+ "grad_norm": 3.143488883972168,
978
+ "kl": 0.49482421875,
979
+ "learning_rate": 9.272677612385667e-07,
980
+ "loss": 0.0198,
981
+ "reward": 2.1639647781848907,
982
+ "reward_std": 0.5980867598205805,
983
+ "rewards/accuracy_reward": 0.735714315623045,
984
+ "rewards/cosine_scaled_reward": 0.5092027972044889,
985
+ "rewards/format_reward": 0.0,
986
+ "rewards/reasoning_steps_reward": 0.9190476804971695,
987
+ "step": 310
988
+ },
989
+ {
990
+ "completion_length": 711.8625305175781,
991
+ "epoch": 0.672,
992
+ "grad_norm": 7.134365081787109,
993
+ "kl": 0.550030517578125,
994
+ "learning_rate": 8.759520053380591e-07,
995
+ "loss": 0.022,
996
+ "reward": 2.110590432584286,
997
+ "reward_std": 0.6294085841625929,
998
+ "rewards/accuracy_reward": 0.6964285980910063,
999
+ "rewards/cosine_scaled_reward": 0.4891618086723611,
1000
+ "rewards/format_reward": 0.0,
1001
+ "rewards/reasoning_steps_reward": 0.9250000715255737,
1002
+ "step": 315
1003
+ },
1004
+ {
1005
+ "completion_length": 677.2786026000977,
1006
+ "epoch": 0.6826666666666666,
1007
+ "grad_norm": 26.3464298248291,
1008
+ "kl": 0.179278564453125,
1009
+ "learning_rate": 8.255048961321088e-07,
1010
+ "loss": 0.0072,
1011
+ "reward": 2.1933317139744757,
1012
+ "reward_std": 0.5765910983085633,
1013
+ "rewards/accuracy_reward": 0.7500000298023224,
1014
+ "rewards/cosine_scaled_reward": 0.5183316646143794,
1015
+ "rewards/format_reward": 0.0,
1016
+ "rewards/reasoning_steps_reward": 0.9250000655651093,
1017
+ "step": 320
1018
+ },
1019
+ {
1020
+ "completion_length": 665.1946723937988,
1021
+ "epoch": 0.6933333333333334,
1022
+ "grad_norm": 1.566721796989441,
1023
+ "kl": 0.8156646728515625,
1024
+ "learning_rate": 7.759966537240373e-07,
1025
+ "loss": 0.0326,
1026
+ "reward": 2.27912737429142,
1027
+ "reward_std": 0.555161041021347,
1028
+ "rewards/accuracy_reward": 0.7946428887546062,
1029
+ "rewards/cosine_scaled_reward": 0.5666272971779108,
1030
+ "rewards/format_reward": 0.0,
1031
+ "rewards/reasoning_steps_reward": 0.9178572088479996,
1032
+ "step": 325
1033
+ },
1034
+ {
1035
+ "completion_length": 693.6536056518555,
1036
+ "epoch": 0.704,
1037
+ "grad_norm": 13.486714363098145,
1038
+ "kl": 0.17557373046875,
1039
+ "learning_rate": 7.274961913568773e-07,
1040
+ "loss": 0.007,
1041
+ "reward": 2.166937792301178,
1042
+ "reward_std": 0.6367484670132398,
1043
+ "rewards/accuracy_reward": 0.7357143186032772,
1044
+ "rewards/cosine_scaled_reward": 0.5234853073954582,
1045
+ "rewards/format_reward": 0.0,
1046
+ "rewards/reasoning_steps_reward": 0.907738147675991,
1047
+ "step": 330
1048
+ },
1049
+ {
1050
+ "completion_length": 697.7536041259766,
1051
+ "epoch": 0.7146666666666667,
1052
+ "grad_norm": 14.8841552734375,
1053
+ "kl": 29.035800170898437,
1054
+ "learning_rate": 6.800710194892484e-07,
1055
+ "loss": 1.1599,
1056
+ "reward": 2.207159787416458,
1057
+ "reward_std": 0.6891704991459846,
1058
+ "rewards/accuracy_reward": 0.7410714641213417,
1059
+ "rewards/cosine_scaled_reward": 0.5375168476253748,
1060
+ "rewards/format_reward": 0.0,
1061
+ "rewards/reasoning_steps_reward": 0.9285714894533157,
1062
+ "step": 335
1063
+ },
1064
+ {
1065
+ "completion_length": 709.1589599609375,
1066
+ "epoch": 0.7253333333333334,
1067
+ "grad_norm": 67.83998107910156,
1068
+ "kl": 0.5466156005859375,
1069
+ "learning_rate": 6.33787151823836e-07,
1070
+ "loss": 0.0219,
1071
+ "reward": 2.1167072311043738,
1072
+ "reward_std": 0.6302111553028226,
1073
+ "rewards/accuracy_reward": 0.7107143126428127,
1074
+ "rewards/cosine_scaled_reward": 0.5006357172504068,
1075
+ "rewards/format_reward": 0.0,
1076
+ "rewards/reasoning_steps_reward": 0.9053572043776512,
1077
+ "step": 340
1078
+ },
1079
+ {
1080
+ "completion_length": 671.0464561462402,
1081
+ "epoch": 0.736,
1082
+ "grad_norm": 9.81600284576416,
1083
+ "kl": 1.0592437744140626,
1084
+ "learning_rate": 5.887090134192947e-07,
1085
+ "loss": 0.0423,
1086
+ "reward": 2.292465257644653,
1087
+ "reward_std": 0.5572628553956747,
1088
+ "rewards/accuracy_reward": 0.7857143163681031,
1089
+ "rewards/cosine_scaled_reward": 0.5805604325607419,
1090
+ "rewards/format_reward": 0.0,
1091
+ "rewards/reasoning_steps_reward": 0.9261905312538147,
1092
+ "step": 345
1093
+ },
1094
+ {
1095
+ "completion_length": 706.3339599609375,
1096
+ "epoch": 0.7466666666666667,
1097
+ "grad_norm": 5.232671737670898,
1098
+ "kl": 0.52496337890625,
1099
+ "learning_rate": 5.448993510134669e-07,
1100
+ "loss": 0.021,
1101
+ "reward": 2.179406076669693,
1102
+ "reward_std": 0.6182668030261993,
1103
+ "rewards/accuracy_reward": 0.7285714585334062,
1104
+ "rewards/cosine_scaled_reward": 0.5252393416129053,
1105
+ "rewards/format_reward": 0.0,
1106
+ "rewards/reasoning_steps_reward": 0.9255952969193458,
1107
+ "step": 350
1108
+ },
1109
+ {
1110
+ "completion_length": 682.7000328063965,
1111
+ "epoch": 0.7573333333333333,
1112
+ "grad_norm": 10.811017990112305,
1113
+ "kl": 0.27938232421875,
1114
+ "learning_rate": 5.024191456827498e-07,
1115
+ "loss": 0.0112,
1116
+ "reward": 2.2113805234432222,
1117
+ "reward_std": 0.6210865731351077,
1118
+ "rewards/accuracy_reward": 0.7553571738302708,
1119
+ "rewards/cosine_scaled_reward": 0.5310232989490032,
1120
+ "rewards/format_reward": 0.0,
1121
+ "rewards/reasoning_steps_reward": 0.9250000566244125,
1122
+ "step": 355
1123
+ },
1124
+ {
1125
+ "completion_length": 679.5375274658203,
1126
+ "epoch": 0.768,
1127
+ "grad_norm": 11.851579666137695,
1128
+ "kl": 0.15789794921875,
1129
+ "learning_rate": 4.6132752795918667e-07,
1130
+ "loss": 0.0063,
1131
+ "reward": 2.2049001812934876,
1132
+ "reward_std": 0.6100614225491882,
1133
+ "rewards/accuracy_reward": 0.7517857491970062,
1134
+ "rewards/cosine_scaled_reward": 0.545971542969346,
1135
+ "rewards/format_reward": 0.0,
1136
+ "rewards/reasoning_steps_reward": 0.9071429073810577,
1137
+ "step": 360
1138
+ },
1139
+ {
1140
+ "completion_length": 698.9321739196778,
1141
+ "epoch": 0.7786666666666666,
1142
+ "grad_norm": 81.21385192871094,
1143
+ "kl": 0.9218048095703125,
1144
+ "learning_rate": 4.2168169552342905e-07,
1145
+ "loss": 0.0369,
1146
+ "reward": 2.1202023535966874,
1147
+ "reward_std": 0.6697802128270268,
1148
+ "rewards/accuracy_reward": 0.7053571727126837,
1149
+ "rewards/cosine_scaled_reward": 0.48210706626996397,
1150
+ "rewards/format_reward": 0.0,
1151
+ "rewards/reasoning_steps_reward": 0.9327381521463394,
1152
+ "step": 365
1153
+ },
1154
+ {
1155
+ "completion_length": 677.235743713379,
1156
+ "epoch": 0.7893333333333333,
1157
+ "grad_norm": 21.409543991088867,
1158
+ "kl": 1.5054473876953125,
1159
+ "learning_rate": 3.8353683358814046e-07,
1160
+ "loss": 0.0603,
1161
+ "reward": 2.1415405943989754,
1162
+ "reward_std": 0.5950695391744375,
1163
+ "rewards/accuracy_reward": 0.7160714630037546,
1164
+ "rewards/cosine_scaled_reward": 0.49868337218649683,
1165
+ "rewards/format_reward": 0.0,
1166
+ "rewards/reasoning_steps_reward": 0.926785783469677,
1167
+ "step": 370
1168
+ },
1169
+ {
1170
+ "completion_length": 688.4768150329589,
1171
+ "epoch": 0.8,
1172
+ "grad_norm": 6.628698348999023,
1173
+ "kl": 0.5792510986328125,
1174
+ "learning_rate": 3.469460380826697e-07,
1175
+ "loss": 0.0232,
1176
+ "reward": 2.145669251680374,
1177
+ "reward_std": 0.6894128751009703,
1178
+ "rewards/accuracy_reward": 0.7125000268220901,
1179
+ "rewards/cosine_scaled_reward": 0.502216786518693,
1180
+ "rewards/format_reward": 0.0,
1181
+ "rewards/reasoning_steps_reward": 0.9309524387121201,
1182
+ "step": 375
1183
+ },
1184
+ {
1185
+ "completion_length": 673.8661003112793,
1186
+ "epoch": 0.8106666666666666,
1187
+ "grad_norm": 7.763125896453857,
1188
+ "kl": 0.376788330078125,
1189
+ "learning_rate": 3.119602417459075e-07,
1190
+ "loss": 0.0151,
1191
+ "reward": 2.0863234639167785,
1192
+ "reward_std": 0.6567210204899311,
1193
+ "rewards/accuracy_reward": 0.6946428891271352,
1194
+ "rewards/cosine_scaled_reward": 0.4714424631558359,
1195
+ "rewards/format_reward": 0.0,
1196
+ "rewards/reasoning_steps_reward": 0.9202381551265717,
1197
+ "step": 380
1198
+ },
1199
+ {
1200
+ "completion_length": 681.7732482910156,
1201
+ "epoch": 0.8213333333333334,
1202
+ "grad_norm": 2.6778337955474854,
1203
+ "kl": 0.7844024658203125,
1204
+ "learning_rate": 2.786281432302071e-07,
1205
+ "loss": 0.0314,
1206
+ "reward": 2.1348024934530256,
1207
+ "reward_std": 0.6229438653215766,
1208
+ "rewards/accuracy_reward": 0.7285714592784643,
1209
+ "rewards/cosine_scaled_reward": 0.4931357389315963,
1210
+ "rewards/format_reward": 0.0,
1211
+ "rewards/reasoning_steps_reward": 0.9130952954292297,
1212
+ "step": 385
1213
+ },
1214
+ {
1215
+ "completion_length": 673.9232414245605,
1216
+ "epoch": 0.832,
1217
+ "grad_norm": 5.024774074554443,
1218
+ "kl": 1.637579345703125,
1219
+ "learning_rate": 2.46996139315057e-07,
1220
+ "loss": 0.0655,
1221
+ "reward": 2.1784381210803985,
1222
+ "reward_std": 0.6571927208453416,
1223
+ "rewards/accuracy_reward": 0.7553571790456772,
1224
+ "rewards/cosine_scaled_reward": 0.5171285319607705,
1225
+ "rewards/format_reward": 0.0,
1226
+ "rewards/reasoning_steps_reward": 0.9059524446725845,
1227
+ "step": 390
1228
+ },
1229
+ {
1230
+ "completion_length": 659.0571716308593,
1231
+ "epoch": 0.8426666666666667,
1232
+ "grad_norm": 3.3763248920440674,
1233
+ "kl": 25.73623046875,
1234
+ "learning_rate": 2.1710826032485286e-07,
1235
+ "loss": 1.0278,
1236
+ "reward": 2.1876179754734038,
1237
+ "reward_std": 0.5652194958180189,
1238
+ "rewards/accuracy_reward": 0.7553571701049805,
1239
+ "rewards/cosine_scaled_reward": 0.5280940998345613,
1240
+ "rewards/format_reward": 0.0,
1241
+ "rewards/reasoning_steps_reward": 0.9041667342185974,
1242
+ "step": 395
1243
+ },
1244
+ {
1245
+ "completion_length": 718.1357467651367,
1246
+ "epoch": 0.8533333333333334,
1247
+ "grad_norm": 5.579762935638428,
1248
+ "kl": 0.422265625,
1249
+ "learning_rate": 1.8900610884066817e-07,
1250
+ "loss": 0.0169,
1251
+ "reward": 2.0510597810149194,
1252
+ "reward_std": 0.6493859238922596,
1253
+ "rewards/accuracy_reward": 0.6696428947150708,
1254
+ "rewards/cosine_scaled_reward": 0.4534406474791467,
1255
+ "rewards/format_reward": 0.0,
1256
+ "rewards/reasoning_steps_reward": 0.927976231276989,
1257
+ "step": 400
1258
+ },
1259
+ {
1260
+ "epoch": 0.8533333333333334,
1261
+ "eval_completion_length": 686.8438880981445,
1262
+ "eval_kl": 0.515645947265625,
1263
+ "eval_loss": 0.020598456263542175,
1264
+ "eval_reward": 2.017853285288811,
1265
+ "eval_reward_std": 0.6641908749222756,
1266
+ "eval_rewards/accuracy_reward": 0.6639143145978451,
1267
+ "eval_rewards/cosine_scaled_reward": 0.4352722596784588,
1268
+ "eval_rewards/format_reward": 0.0,
1269
+ "eval_rewards/reasoning_steps_reward": 0.9186667237281799,
1270
+ "eval_runtime": 21111.8983,
1271
+ "eval_samples_per_second": 0.237,
1272
+ "eval_steps_per_second": 0.017,
1273
+ "step": 400
1274
+ },
1275
+ {
1276
+ "completion_length": 697.8196746826172,
1277
+ "epoch": 0.864,
1278
+ "grad_norm": 5.856068134307861,
1279
+ "kl": 0.6500579833984375,
1280
+ "learning_rate": 1.627288017913383e-07,
1281
+ "loss": 0.026,
1282
+ "reward": 2.1224559903144837,
1283
+ "reward_std": 0.6821707881987095,
1284
+ "rewards/accuracy_reward": 0.7089286036789417,
1285
+ "rewards/cosine_scaled_reward": 0.47543211858719586,
1286
+ "rewards/format_reward": 0.0,
1287
+ "rewards/reasoning_steps_reward": 0.9380952849984169,
1288
+ "step": 405
1289
+ },
1290
+ {
1291
+ "completion_length": 706.5928840637207,
1292
+ "epoch": 0.8746666666666667,
1293
+ "grad_norm": 78.17637634277344,
1294
+ "kl": 1.1235443115234376,
1295
+ "learning_rate": 1.3831291600445573e-07,
1296
+ "loss": 0.0449,
1297
+ "reward": 2.150267854332924,
1298
+ "reward_std": 0.5447332851588726,
1299
+ "rewards/accuracy_reward": 0.7107143115252257,
1300
+ "rewards/cosine_scaled_reward": 0.5175296729197726,
1301
+ "rewards/format_reward": 0.0,
1302
+ "rewards/reasoning_steps_reward": 0.922023868560791,
1303
+ "step": 410
1304
+ },
1305
+ {
1306
+ "completion_length": 707.3071754455566,
1307
+ "epoch": 0.8853333333333333,
1308
+ "grad_norm": 22.277971267700195,
1309
+ "kl": 0.6788360595703125,
1310
+ "learning_rate": 1.1579243729307487e-07,
1311
+ "loss": 0.0272,
1312
+ "reward": 2.047066758573055,
1313
+ "reward_std": 0.6944912567734718,
1314
+ "rewards/accuracy_reward": 0.6767857410013676,
1315
+ "rewards/cosine_scaled_reward": 0.461352374125272,
1316
+ "rewards/format_reward": 0.0,
1317
+ "rewards/reasoning_steps_reward": 0.9089286208152771,
1318
+ "step": 415
1319
+ },
1320
+ {
1321
+ "completion_length": 699.7625297546386,
1322
+ "epoch": 0.896,
1323
+ "grad_norm": 7.57394552230835,
1324
+ "kl": 0.2780609130859375,
1325
+ "learning_rate": 9.519871314899092e-08,
1326
+ "loss": 0.0111,
1327
+ "reward": 2.196362778544426,
1328
+ "reward_std": 0.561077106744051,
1329
+ "rewards/accuracy_reward": 0.7553571626543999,
1330
+ "rewards/cosine_scaled_reward": 0.5237436585128308,
1331
+ "rewards/format_reward": 0.0,
1332
+ "rewards/reasoning_steps_reward": 0.9172619685530663,
1333
+ "step": 420
1334
+ },
1335
+ {
1336
+ "completion_length": 693.0428848266602,
1337
+ "epoch": 0.9066666666666666,
1338
+ "grad_norm": 3.5068612098693848,
1339
+ "kl": 0.4284149169921875,
1340
+ "learning_rate": 7.656040910844358e-08,
1341
+ "loss": 0.0171,
1342
+ "reward": 2.159999814629555,
1343
+ "reward_std": 0.7004330482333898,
1344
+ "rewards/accuracy_reward": 0.7267857469618321,
1345
+ "rewards/cosine_scaled_reward": 0.4992854680866003,
1346
+ "rewards/format_reward": 0.0,
1347
+ "rewards/reasoning_steps_reward": 0.9339286342263222,
1348
+ "step": 425
1349
+ },
1350
+ {
1351
+ "completion_length": 689.8589553833008,
1352
+ "epoch": 0.9173333333333333,
1353
+ "grad_norm": 2.3973488807678223,
1354
+ "kl": 0.8845184326171875,
1355
+ "learning_rate": 5.990346885098235e-08,
1356
+ "loss": 0.0354,
1357
+ "reward": 2.224926471710205,
1358
+ "reward_std": 0.6631423626095057,
1359
+ "rewards/accuracy_reward": 0.7696428894996643,
1360
+ "rewards/cosine_scaled_reward": 0.5511168725788593,
1361
+ "rewards/format_reward": 0.0,
1362
+ "rewards/reasoning_steps_reward": 0.9041667267680168,
1363
+ "step": 430
1364
+ },
1365
+ {
1366
+ "completion_length": 690.8053848266602,
1367
+ "epoch": 0.928,
1368
+ "grad_norm": 45.488250732421875,
1369
+ "kl": 0.7797271728515625,
1370
+ "learning_rate": 4.5251078087033493e-08,
1371
+ "loss": 0.0312,
1372
+ "reward": 2.2093738108873366,
1373
+ "reward_std": 0.6439491007477045,
1374
+ "rewards/accuracy_reward": 0.7589286059141159,
1375
+ "rewards/cosine_scaled_reward": 0.5242547009140253,
1376
+ "rewards/format_reward": 0.0,
1377
+ "rewards/reasoning_steps_reward": 0.9261905267834664,
1378
+ "step": 435
1379
+ },
1380
+ {
1381
+ "completion_length": 697.6786079406738,
1382
+ "epoch": 0.9386666666666666,
1383
+ "grad_norm": 2.601253032684326,
1384
+ "kl": 0.8488525390625,
1385
+ "learning_rate": 3.262363228443427e-08,
1386
+ "loss": 0.034,
1387
+ "reward": 2.0766124978661535,
1388
+ "reward_std": 0.705447631329298,
1389
+ "rewards/accuracy_reward": 0.7142857477068901,
1390
+ "rewards/cosine_scaled_reward": 0.4629219459369779,
1391
+ "rewards/format_reward": 0.0,
1392
+ "rewards/reasoning_steps_reward": 0.8994048193097115,
1393
+ "step": 440
1394
+ },
1395
+ {
1396
+ "completion_length": 705.3661033630372,
1397
+ "epoch": 0.9493333333333334,
1398
+ "grad_norm": 8.506255149841309,
1399
+ "kl": 0.8570648193359375,
1400
+ "learning_rate": 2.2038708278862952e-08,
1401
+ "loss": 0.0343,
1402
+ "reward": 2.007576309144497,
1403
+ "reward_std": 0.5604014500975609,
1404
+ "rewards/accuracy_reward": 0.6571428844705224,
1405
+ "rewards/cosine_scaled_reward": 0.44210004140622916,
1406
+ "rewards/format_reward": 0.0,
1407
+ "rewards/reasoning_steps_reward": 0.9083333998918534,
1408
+ "step": 445
1409
+ },
1410
+ {
1411
+ "completion_length": 663.2571716308594,
1412
+ "epoch": 0.96,
1413
+ "grad_norm": 24.591154098510742,
1414
+ "kl": 0.5593414306640625,
1415
+ "learning_rate": 1.3511039807673209e-08,
1416
+ "loss": 0.0224,
1417
+ "reward": 2.1817306116223336,
1418
+ "reward_std": 0.6179227635264397,
1419
+ "rewards/accuracy_reward": 0.7482143232598901,
1420
+ "rewards/cosine_scaled_reward": 0.5144686248153448,
1421
+ "rewards/format_reward": 0.0,
1422
+ "rewards/reasoning_steps_reward": 0.9190476790070534,
1423
+ "step": 450
1424
+ },
1425
+ {
1426
+ "completion_length": 652.6625297546386,
1427
+ "epoch": 0.9706666666666667,
1428
+ "grad_norm": 2.691333770751953,
1429
+ "kl": 0.5278656005859375,
1430
+ "learning_rate": 7.0524970011963675e-09,
1431
+ "loss": 0.0211,
1432
+ "reward": 2.30428284406662,
1433
+ "reward_std": 0.5599341684952378,
1434
+ "rewards/accuracy_reward": 0.8071428835391998,
1435
+ "rewards/cosine_scaled_reward": 0.5864256478380412,
1436
+ "rewards/format_reward": 0.0,
1437
+ "rewards/reasoning_steps_reward": 0.9107143521308899,
1438
+ "step": 455
1439
+ },
1440
+ {
1441
+ "completion_length": 659.8589561462402,
1442
+ "epoch": 0.9813333333333333,
1443
+ "grad_norm": 9.438557624816895,
1444
+ "kl": 0.751141357421875,
1445
+ "learning_rate": 2.6720698600553595e-09,
1446
+ "loss": 0.0301,
1447
+ "reward": 2.1261632844805716,
1448
+ "reward_std": 0.6333575483411551,
1449
+ "rewards/accuracy_reward": 0.7285714544355869,
1450
+ "rewards/cosine_scaled_reward": 0.49997273324988784,
1451
+ "rewards/format_reward": 0.0,
1452
+ "rewards/reasoning_steps_reward": 0.897619104385376,
1453
+ "step": 460
1454
+ },
1455
+ {
1456
+ "completion_length": 698.3178894042969,
1457
+ "epoch": 0.992,
1458
+ "grad_norm": 4.72813081741333,
1459
+ "kl": 0.8891571044921875,
1460
+ "learning_rate": 3.7585574148779613e-10,
1461
+ "loss": 0.0356,
1462
+ "reward": 2.1171563625335694,
1463
+ "reward_std": 0.7153698660433292,
1464
+ "rewards/accuracy_reward": 0.7089286103844643,
1465
+ "rewards/cosine_scaled_reward": 0.48382292576134206,
1466
+ "rewards/format_reward": 0.0,
1467
+ "rewards/reasoning_steps_reward": 0.9244048178195954,
1468
+ "step": 465
1469
+ },
1470
+ {
1471
+ "completion_length": 698.711343129476,
1472
+ "epoch": 0.9984,
1473
+ "kl": 1.0117034912109375,
1474
+ "reward": 2.194051335255305,
1475
+ "reward_std": 0.6752708829008043,
1476
+ "rewards/accuracy_reward": 0.7619047996898493,
1477
+ "rewards/cosine_scaled_reward": 0.5353211159817874,
1478
+ "rewards/format_reward": 0.0,
1479
+ "rewards/reasoning_steps_reward": 0.8968254625797272,
1480
+ "step": 468,
1481
+ "total_flos": 0.0,
1482
+ "train_loss": 0.036631251517900455,
1483
+ "train_runtime": 117440.362,
1484
+ "train_samples_per_second": 0.064,
1485
+ "train_steps_per_second": 0.004
1486
+ }
1487
+ ],
1488
+ "logging_steps": 5,
1489
+ "max_steps": 468,
1490
+ "num_input_tokens_seen": 0,
1491
+ "num_train_epochs": 1,
1492
+ "save_steps": 500,
1493
+ "stateful_callbacks": {
1494
+ "TrainerControl": {
1495
+ "args": {
1496
+ "should_epoch_stop": false,
1497
+ "should_evaluate": false,
1498
+ "should_log": false,
1499
+ "should_save": false,
1500
+ "should_training_stop": false
1501
+ },
1502
+ "attributes": {}
1503
+ }
1504
+ },
1505
+ "total_flos": 0.0,
1506
+ "train_batch_size": 2,
1507
+ "trial_name": null,
1508
+ "trial_params": null
1509
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4b1da28688cc64f93aacef34e5f7dce536508527fffab3bcf6a0314f8b6bb24
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff