--- library_name: transformers license: apache-2.0 base_model: Open-Orca/Mistral-7B-OpenOrca tags: - axolotl - generated_from_trainer model-index: - name: Mistral-7B-OpenOrca-csft-open-orca-q-sparse-all-0.5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: Open-Orca/Mistral-7B-OpenOrca model_type: AutoModelForCausalLM tokenizer_config: Open-Orca/Mistral-7B-OpenOrca tokenizer_type: AutoTokenizer tokenizer_use_fast: false resize_token_embeddings_to_32x: false flash_attention: true xformers_attention: load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: skymizer/open-orca-conversations type: chat_template field_messages: messages train_on_split: train test_datasets: - path: skymizer/open-orca-conversations type: chat_template field_messages: messages split: test hf_use_auth_token: true dataset_prepared_path: /mnt/home/model-team/dataset/pretokenized/Open-Orca/Mistral-7B-OpenOrca output_dir: /mnt/home/model-team/models/Mistral-7B-OpenOrca-csft-open-orca-q-sparse-all-0.5 sequence_len: 2048 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false # eval_causal_lm_metrics: ["perplexity"] wandb_project: "axolotl_q_sparse_sft" wandb_entity: wandb_watch: wandb_name: "Mistral-7B-OpenOrca-csft-open-orca-q-sparse-all-0.5" wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 8 eval_batch_size: num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.000005 weight_decay: 0.0 adam_beta1: 0.9 adam_beta2: 0.95 adam_eps: 0.000001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false hub_model_id: "skymizer/Mistral-7B-OpenOrca-csft-open-orca-q-sparse-all-0.5" save_strategy: "steps" save_steps: 500 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 warmup_ratio: 0.03 eval_steps: 500 eval_table_size: eval_max_new_tokens: 2048 debug: deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: seed: 42 ```

# Mistral-7B-OpenOrca-csft-open-orca-q-sparse-all-0.5 This model is a fine-tuned version of [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 182 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.5806 | 0.0002 | 1 | 11.5826 | | 3.3118 | 0.0824 | 500 | 3.2836 | | 2.9526 | 0.1648 | 1000 | 2.8527 | | 2.6283 | 0.2472 | 1500 | 2.5641 | | 2.4259 | 0.3296 | 2000 | 2.3511 | | 2.2222 | 0.4120 | 2500 | 2.1733 | | 2.1205 | 0.4944 | 3000 | 2.0676 | | 2.0191 | 0.5768 | 3500 | 1.9794 | | 1.9101 | 0.6592 | 4000 | 1.9153 | | 1.8919 | 0.7416 | 4500 | 1.8708 | | 1.9493 | 0.8240 | 5000 | 1.8371 | | 1.9509 | 0.9064 | 5500 | 1.8220 | | 1.8483 | 0.9888 | 6000 | 1.8178 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3