sjrhuschlee commited on
Commit
2fe493c
·
1 Parent(s): 488616c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -14
README.md CHANGED
@@ -41,22 +41,19 @@ model-index:
41
 
42
  # flan-t5-base-mnli
43
 
44
- ## Table of Contents
45
- - [Model Details](#model-details)
46
- - [How To Get Started With the Model](#how-to-get-started-with-the-model)
47
- - [Uses](#uses)
48
- - [Risks, Limitations and Biases](#risks-limitations-and-biases)
49
 
50
- ## Model Details
51
 
52
- **Model Description:** flan-t5-base-mnli is the [flan-T5 base model](https://huggingface.co/google/flan-t5-base) fine-tuned on the [Multi-Genre Natural Language Inference (MNLI)](https://huggingface.co/datasets/multi_nli) corpus.
53
-
54
- - **Model Type:** Transformer-based language model
55
- - **Language(s):** English
56
  - **License:** MIT
57
- - **Parent Model:** This model is a fine-tuned version of the flan-T5 base model. Users should see the [flan-T5 base model card](https://huggingface.co/google/flan-t5-base) for relevant information.
 
 
 
 
 
58
 
59
- ## How to Get Started with the Model
60
 
61
  Use the code below to get started with the model. The model can be loaded with the zero-shot-classification pipeline like so:
62
 
@@ -118,5 +115,4 @@ hypothesis_template = "This text speaks about a {} profession."
118
  classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
119
  ```
120
 
121
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
122
- ```
 
41
 
42
  # flan-t5-base-mnli
43
 
44
+ flan-t5-base-mnli is the [flan-T5 base model](https://huggingface.co/google/flan-t5-base) fine-tuned on the [Multi-Genre Natural Language Inference (MNLI)](https://huggingface.co/datasets/multi_nli) corpus.
 
 
 
 
45
 
46
+ ## Overview
47
 
 
 
 
 
48
  - **License:** MIT
49
+ - **Language model:** flan-t5-base
50
+ - **Language:** English
51
+ - **Downstream-task:** Zero-shot Classification, Text Classification
52
+ - **Training data:** MNLI
53
+ - **Eval data:** MNLI (Matched and Mismatched)
54
+ - **Infrastructure**: 1x NVIDIA 3070
55
 
56
+ ## Model Usage
57
 
58
  Use the code below to get started with the model. The model can be loaded with the zero-shot-classification pipeline like so:
59
 
 
115
  classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
116
  ```
117
 
118
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.