hanasim commited on
Commit
06e46c2
·
verified ·
1 Parent(s): 9d48509

End of training

Browse files
README.md CHANGED
@@ -2,38 +2,39 @@
2
  license: apache-2.0
3
  base_model: openai/whisper-base
4
  tags:
 
5
  - generated_from_trainer
6
  datasets:
7
- - fleurs
8
  metrics:
9
  - wer
10
  model-index:
11
- - name: breeze-listen-dsw-base-kn
12
  results:
13
  - task:
14
  name: Automatic Speech Recognition
15
  type: automatic-speech-recognition
16
  dataset:
17
- name: fleurs
18
- type: fleurs
19
  config: kn_in
20
  split: test
21
  args: kn_in
22
  metrics:
23
  - name: Wer
24
  type: wer
25
- value: 31.10585305105853
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
  should probably proofread and complete it, then remove this comment. -->
30
 
31
- # breeze-listen-dsw-base-kn
32
 
33
- This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the fleurs dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2549
36
- - Wer: 31.1059
37
 
38
  ## Model description
39
 
 
2
  license: apache-2.0
3
  base_model: openai/whisper-base
4
  tags:
5
+ - whisper-event
6
  - generated_from_trainer
7
  datasets:
8
+ - google/fleurs
9
  metrics:
10
  - wer
11
  model-index:
12
+ - name: Breeze DSW Kannada - base
13
  results:
14
  - task:
15
  name: Automatic Speech Recognition
16
  type: automatic-speech-recognition
17
  dataset:
18
+ name: google/fleurs kn_in
19
+ type: google/fleurs
20
  config: kn_in
21
  split: test
22
  args: kn_in
23
  metrics:
24
  - name: Wer
25
  type: wer
26
+ value: 30.612702366127024
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
  should probably proofread and complete it, then remove this comment. -->
31
 
32
+ # Breeze DSW Kannada - base
33
 
34
+ This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs kn_in dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.2258
37
+ - Wer: 30.6127
38
 
39
  ## Model description
40
 
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.01,
3
+ "eval_loss": 0.225830078125,
4
+ "eval_runtime": 2101.4644,
5
+ "eval_samples_per_second": 0.39,
6
+ "eval_steps_per_second": 0.025,
7
+ "eval_wer": 30.612702366127024,
8
+ "train_loss": 0.24649163818359374,
9
+ "train_runtime": 54303.9792,
10
+ "train_samples_per_second": 0.589,
11
+ "train_steps_per_second": 0.018
12
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.01,
3
+ "eval_loss": 0.225830078125,
4
+ "eval_runtime": 2101.4644,
5
+ "eval_samples_per_second": 0.39,
6
+ "eval_steps_per_second": 0.025,
7
+ "eval_wer": 30.612702366127024
8
+ }
runs/Jan22_17-12-12_knight/events.out.tfevents.1705996372.knight.93645.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f70601db6ad7ddd268137b31c70da9386d8dbd3dffec60706cabc467ba9cf50
3
+ size 406
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.01,
3
+ "train_loss": 0.24649163818359374,
4
+ "train_runtime": 54303.9792,
5
+ "train_samples_per_second": 0.589,
6
+ "train_steps_per_second": 0.018
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 30.612702366127024,
3
+ "best_model_checkpoint": "/cosmos/home/sp-operator/ai/training/models/huggingface/scripts/../breeze-listen-dsw-base-kn/checkpoint-700",
4
+ "epoch": 14.006,
5
+ "eval_steps": 100,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 5.0453611334320685e-06,
14
+ "loss": 1.8464,
15
+ "step": 25
16
+ },
17
+ {
18
+ "epoch": 0.05,
19
+ "learning_rate": 6.229195710491767e-06,
20
+ "loss": 1.642,
21
+ "step": 50
22
+ },
23
+ {
24
+ "epoch": 1.0,
25
+ "learning_rate": 6.903829450223392e-06,
26
+ "loss": 1.2861,
27
+ "step": 75
28
+ },
29
+ {
30
+ "epoch": 1.03,
31
+ "learning_rate": 7.377725845391017e-06,
32
+ "loss": 0.7196,
33
+ "step": 100
34
+ },
35
+ {
36
+ "epoch": 1.03,
37
+ "eval_loss": 0.5166015625,
38
+ "eval_runtime": 2113.7829,
39
+ "eval_samples_per_second": 0.388,
40
+ "eval_steps_per_second": 0.025,
41
+ "eval_wer": 55.21295143212951,
42
+ "step": 100
43
+ },
44
+ {
45
+ "epoch": 1.05,
46
+ "learning_rate": 7.743343231239583e-06,
47
+ "loss": 0.4782,
48
+ "step": 125
49
+ },
50
+ {
51
+ "epoch": 2.01,
52
+ "learning_rate": 8.041073861170494e-06,
53
+ "loss": 0.3642,
54
+ "step": 150
55
+ },
56
+ {
57
+ "epoch": 2.03,
58
+ "learning_rate": 8.292222957399574e-06,
59
+ "loss": 0.3108,
60
+ "step": 175
61
+ },
62
+ {
63
+ "epoch": 2.06,
64
+ "learning_rate": 8.509413541357755e-06,
65
+ "loss": 0.2769,
66
+ "step": 200
67
+ },
68
+ {
69
+ "epoch": 2.06,
70
+ "eval_loss": 0.253173828125,
71
+ "eval_runtime": 2105.4925,
72
+ "eval_samples_per_second": 0.389,
73
+ "eval_steps_per_second": 0.025,
74
+ "eval_wer": 36.15940224159402,
75
+ "step": 200
76
+ },
77
+ {
78
+ "epoch": 3.01,
79
+ "learning_rate": 8.700744577655557e-06,
80
+ "loss": 0.247,
81
+ "step": 225
82
+ },
83
+ {
84
+ "epoch": 3.04,
85
+ "learning_rate": 8.871723942761204e-06,
86
+ "loss": 0.2221,
87
+ "step": 250
88
+ },
89
+ {
90
+ "epoch": 3.06,
91
+ "learning_rate": 9.026267958246849e-06,
92
+ "loss": 0.2084,
93
+ "step": 275
94
+ },
95
+ {
96
+ "epoch": 4.02,
97
+ "learning_rate": 9.16726106663399e-06,
98
+ "loss": 0.1896,
99
+ "step": 300
100
+ },
101
+ {
102
+ "epoch": 4.02,
103
+ "eval_loss": 0.2166748046875,
104
+ "eval_runtime": 2098.7697,
105
+ "eval_samples_per_second": 0.391,
106
+ "eval_steps_per_second": 0.025,
107
+ "eval_wer": 32.72976338729763,
108
+ "step": 300
109
+ },
110
+ {
111
+ "epoch": 4.04,
112
+ "learning_rate": 9.296889251455016e-06,
113
+ "loss": 0.1747,
114
+ "step": 325
115
+ },
116
+ {
117
+ "epoch": 4.07,
118
+ "learning_rate": 9.416848797368692e-06,
119
+ "loss": 0.1644,
120
+ "step": 350
121
+ },
122
+ {
123
+ "epoch": 5.02,
124
+ "learning_rate": 9.528482449516371e-06,
125
+ "loss": 0.153,
126
+ "step": 375
127
+ },
128
+ {
129
+ "epoch": 5.04,
130
+ "learning_rate": 9.632871309784314e-06,
131
+ "loss": 0.1384,
132
+ "step": 400
133
+ },
134
+ {
135
+ "epoch": 5.04,
136
+ "eval_loss": 0.2037353515625,
137
+ "eval_runtime": 2094.8651,
138
+ "eval_samples_per_second": 0.391,
139
+ "eval_steps_per_second": 0.025,
140
+ "eval_wer": 31.835616438356162,
141
+ "step": 400
142
+ },
143
+ {
144
+ "epoch": 5.07,
145
+ "learning_rate": 9.73089868785391e-06,
146
+ "loss": 0.1342,
147
+ "step": 425
148
+ },
149
+ {
150
+ "epoch": 6.02,
151
+ "learning_rate": 9.823295589572114e-06,
152
+ "loss": 0.1195,
153
+ "step": 450
154
+ },
155
+ {
156
+ "epoch": 6.05,
157
+ "learning_rate": 9.910673836465484e-06,
158
+ "loss": 0.109,
159
+ "step": 475
160
+ },
161
+ {
162
+ "epoch": 7.0,
163
+ "learning_rate": 9.993550644973805e-06,
164
+ "loss": 0.1099,
165
+ "step": 500
166
+ },
167
+ {
168
+ "epoch": 7.0,
169
+ "eval_loss": 0.2030029296875,
170
+ "eval_runtime": 2095.5793,
171
+ "eval_samples_per_second": 0.391,
172
+ "eval_steps_per_second": 0.025,
173
+ "eval_wer": 31.056039850560396,
174
+ "step": 500
175
+ },
176
+ {
177
+ "epoch": 7.03,
178
+ "learning_rate": 9.56e-06,
179
+ "loss": 0.0928,
180
+ "step": 525
181
+ },
182
+ {
183
+ "epoch": 7.05,
184
+ "learning_rate": 9.060000000000001e-06,
185
+ "loss": 0.0871,
186
+ "step": 550
187
+ },
188
+ {
189
+ "epoch": 8.01,
190
+ "learning_rate": 8.560000000000001e-06,
191
+ "loss": 0.0842,
192
+ "step": 575
193
+ },
194
+ {
195
+ "epoch": 8.03,
196
+ "learning_rate": 8.06e-06,
197
+ "loss": 0.0707,
198
+ "step": 600
199
+ },
200
+ {
201
+ "epoch": 8.03,
202
+ "eval_loss": 0.21533203125,
203
+ "eval_runtime": 2096.294,
204
+ "eval_samples_per_second": 0.391,
205
+ "eval_steps_per_second": 0.025,
206
+ "eval_wer": 31.245330012453298,
207
+ "step": 600
208
+ },
209
+ {
210
+ "epoch": 8.06,
211
+ "learning_rate": 7.5600000000000005e-06,
212
+ "loss": 0.0659,
213
+ "step": 625
214
+ },
215
+ {
216
+ "epoch": 9.01,
217
+ "learning_rate": 7.06e-06,
218
+ "loss": 0.0643,
219
+ "step": 650
220
+ },
221
+ {
222
+ "epoch": 9.04,
223
+ "learning_rate": 6.560000000000001e-06,
224
+ "loss": 0.056,
225
+ "step": 675
226
+ },
227
+ {
228
+ "epoch": 9.06,
229
+ "learning_rate": 6.0600000000000004e-06,
230
+ "loss": 0.052,
231
+ "step": 700
232
+ },
233
+ {
234
+ "epoch": 9.06,
235
+ "eval_loss": 0.225830078125,
236
+ "eval_runtime": 2096.1998,
237
+ "eval_samples_per_second": 0.391,
238
+ "eval_steps_per_second": 0.025,
239
+ "eval_wer": 30.612702366127024,
240
+ "step": 700
241
+ },
242
+ {
243
+ "epoch": 10.02,
244
+ "learning_rate": 5.560000000000001e-06,
245
+ "loss": 0.0483,
246
+ "step": 725
247
+ },
248
+ {
249
+ "epoch": 10.04,
250
+ "learning_rate": 5.060000000000001e-06,
251
+ "loss": 0.0424,
252
+ "step": 750
253
+ },
254
+ {
255
+ "epoch": 10.06,
256
+ "learning_rate": 4.56e-06,
257
+ "loss": 0.0422,
258
+ "step": 775
259
+ },
260
+ {
261
+ "epoch": 11.02,
262
+ "learning_rate": 4.060000000000001e-06,
263
+ "loss": 0.0375,
264
+ "step": 800
265
+ },
266
+ {
267
+ "epoch": 11.02,
268
+ "eval_loss": 0.2413330078125,
269
+ "eval_runtime": 2094.1326,
270
+ "eval_samples_per_second": 0.392,
271
+ "eval_steps_per_second": 0.025,
272
+ "eval_wer": 31.220423412204234,
273
+ "step": 800
274
+ },
275
+ {
276
+ "epoch": 11.04,
277
+ "learning_rate": 3.5600000000000002e-06,
278
+ "loss": 0.0329,
279
+ "step": 825
280
+ },
281
+ {
282
+ "epoch": 11.07,
283
+ "learning_rate": 3.0600000000000003e-06,
284
+ "loss": 0.0329,
285
+ "step": 850
286
+ },
287
+ {
288
+ "epoch": 12.02,
289
+ "learning_rate": 2.56e-06,
290
+ "loss": 0.0303,
291
+ "step": 875
292
+ },
293
+ {
294
+ "epoch": 12.05,
295
+ "learning_rate": 2.06e-06,
296
+ "loss": 0.0256,
297
+ "step": 900
298
+ },
299
+ {
300
+ "epoch": 12.05,
301
+ "eval_loss": 0.250732421875,
302
+ "eval_runtime": 2095.7098,
303
+ "eval_samples_per_second": 0.391,
304
+ "eval_steps_per_second": 0.025,
305
+ "eval_wer": 31.06351183063512,
306
+ "step": 900
307
+ },
308
+ {
309
+ "epoch": 13.0,
310
+ "learning_rate": 1.56e-06,
311
+ "loss": 0.0281,
312
+ "step": 925
313
+ },
314
+ {
315
+ "epoch": 13.03,
316
+ "learning_rate": 1.06e-06,
317
+ "loss": 0.0247,
318
+ "step": 950
319
+ },
320
+ {
321
+ "epoch": 13.05,
322
+ "learning_rate": 5.6e-07,
323
+ "loss": 0.0229,
324
+ "step": 975
325
+ },
326
+ {
327
+ "epoch": 14.01,
328
+ "learning_rate": 6.000000000000001e-08,
329
+ "loss": 0.0245,
330
+ "step": 1000
331
+ },
332
+ {
333
+ "epoch": 14.01,
334
+ "eval_loss": 0.2548828125,
335
+ "eval_runtime": 2097.376,
336
+ "eval_samples_per_second": 0.391,
337
+ "eval_steps_per_second": 0.025,
338
+ "eval_wer": 31.10585305105853,
339
+ "step": 1000
340
+ },
341
+ {
342
+ "epoch": 14.01,
343
+ "step": 1000,
344
+ "total_flos": 2.067347538305876e+18,
345
+ "train_loss": 0.24649163818359374,
346
+ "train_runtime": 54303.9792,
347
+ "train_samples_per_second": 0.589,
348
+ "train_steps_per_second": 0.018
349
+ }
350
+ ],
351
+ "logging_steps": 25,
352
+ "max_steps": 1000,
353
+ "num_input_tokens_seen": 0,
354
+ "num_train_epochs": 9223372036854775807,
355
+ "save_steps": 100,
356
+ "total_flos": 2.067347538305876e+18,
357
+ "train_batch_size": 32,
358
+ "trial_name": null,
359
+ "trial_params": null
360
+ }