--- library_name: transformers license: mit base_model: gpt2 tags: - trl - dpo - generated_from_trainer model-index: - name: nlp-a5 results: [] --- # nlp-a5 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on [`distilabel-intel-orca-dpo-pairs`](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) dataset. It achieves the following results on the evaluation set: - Loss: 0.6409 - Rewards/chosen: 0.9778 - Rewards/rejected: -2.1491 - Rewards/accuracies: 0.8235 - Rewards/margins: 3.1270 - Logps/rejected: -410.6469 - Logps/chosen: -337.3829 - Logits/rejected: -66.9816 - Logits/chosen: -67.8481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.38e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6454 | 0.1382 | 50 | 0.7701 | 0.4667 | -1.3878 | 0.7591 | 1.8546 | -406.8403 | -339.9385 | -95.7163 | -95.3393 | | 0.7265 | 0.2764 | 100 | 0.7531 | 0.2791 | -2.1548 | 0.7777 | 2.4339 | -410.6752 | -340.8765 | -85.4456 | -85.2691 | | 0.5317 | 0.4147 | 150 | 0.7164 | 0.0401 | -2.6230 | 0.7743 | 2.6631 | -413.0164 | -342.0717 | -77.7900 | -78.4781 | | 0.8947 | 0.5529 | 200 | 0.7223 | -0.0327 | -3.1585 | 0.7961 | 3.1258 | -415.6938 | -342.4356 | -73.7223 | -74.3845 | | 0.6882 | 0.6911 | 250 | 0.6677 | 0.6186 | -2.0402 | 0.7904 | 2.6588 | -410.1023 | -339.1790 | -66.4183 | -67.2267 | | 0.4596 | 0.8293 | 300 | 0.6199 | 0.5863 | -2.4937 | 0.8116 | 3.0800 | -412.3698 | -339.3405 | -66.5151 | -67.2825 | | 0.6719 | 0.9675 | 350 | 0.6214 | 1.1018 | -1.4390 | 0.7842 | 2.5408 | -407.0965 | -336.7633 | -64.9415 | -65.8130 | | 0.119 | 1.1057 | 400 | 0.6442 | 0.4069 | -2.8694 | 0.8282 | 3.2763 | -414.2482 | -340.2375 | -64.6611 | -65.4554 | | 0.1427 | 1.2440 | 450 | 0.6730 | 1.1133 | -1.9897 | 0.8131 | 3.1030 | -409.8499 | -336.7056 | -65.8348 | -66.7287 | | 0.1022 | 1.3822 | 500 | 0.6409 | 0.9778 | -2.1491 | 0.8235 | 3.1270 | -410.6469 | -337.3829 | -66.9816 | -67.8481 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.4.0+cu124 - Datasets 3.2.0 - Tokenizers 0.20.3