--- library_name: transformers license: mit base_model: gpt2 tags: - trl - dpo - generated_from_trainer model-index: - name: results_orca_dpo_wandb results: [] --- # results_orca_dpo_wandb This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6150 - Rewards/chosen: -0.2701 - Rewards/rejected: -2.5585 - Rewards/accuracies: 0.7940 - Rewards/margins: 2.2885 - Logps/rejected: -425.4867 - Logps/chosen: -344.9728 - Logits/rejected: -76.3682 - Logits/chosen: -76.4329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.9158 | 0.0346 | 50 | 0.7779 | -1.2673 | -3.1650 | 0.7319 | 1.8977 | -431.5514 | -354.9452 | -99.3161 | -98.3339 | | 1.2481 | 0.0691 | 100 | 0.9942 | -3.1400 | -6.5742 | 0.7368 | 3.4342 | -465.6436 | -373.6723 | -86.8154 | -86.6002 | | 0.6814 | 0.1037 | 150 | 0.7237 | -0.3674 | -2.6648 | 0.7635 | 2.2974 | -426.5488 | -345.9457 | -75.5469 | -75.8445 | | 0.6615 | 0.1382 | 200 | 0.6150 | -0.2701 | -2.5585 | 0.7940 | 2.2885 | -425.4867 | -344.9728 | -76.3682 | -76.4329 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.4.0+cu124 - Datasets 3.2.0 - Tokenizers 0.20.3