File size: 3,834 Bytes
0e1cc42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: mit
base_model: gpt2
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: nlp-a5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nlp-a5
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on [`distilabel-intel-orca-dpo-pairs`](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6409
- Rewards/chosen: 0.9778
- Rewards/rejected: -2.1491
- Rewards/accuracies: 0.8235
- Rewards/margins: 3.1270
- Logps/rejected: -410.6469
- Logps/chosen: -337.3829
- Logits/rejected: -66.9816
- Logits/chosen: -67.8481
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.38e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6454 | 0.1382 | 50 | 0.7701 | 0.4667 | -1.3878 | 0.7591 | 1.8546 | -406.8403 | -339.9385 | -95.7163 | -95.3393 |
| 0.7265 | 0.2764 | 100 | 0.7531 | 0.2791 | -2.1548 | 0.7777 | 2.4339 | -410.6752 | -340.8765 | -85.4456 | -85.2691 |
| 0.5317 | 0.4147 | 150 | 0.7164 | 0.0401 | -2.6230 | 0.7743 | 2.6631 | -413.0164 | -342.0717 | -77.7900 | -78.4781 |
| 0.8947 | 0.5529 | 200 | 0.7223 | -0.0327 | -3.1585 | 0.7961 | 3.1258 | -415.6938 | -342.4356 | -73.7223 | -74.3845 |
| 0.6882 | 0.6911 | 250 | 0.6677 | 0.6186 | -2.0402 | 0.7904 | 2.6588 | -410.1023 | -339.1790 | -66.4183 | -67.2267 |
| 0.4596 | 0.8293 | 300 | 0.6199 | 0.5863 | -2.4937 | 0.8116 | 3.0800 | -412.3698 | -339.3405 | -66.5151 | -67.2825 |
| 0.6719 | 0.9675 | 350 | 0.6214 | 1.1018 | -1.4390 | 0.7842 | 2.5408 | -407.0965 | -336.7633 | -64.9415 | -65.8130 |
| 0.119 | 1.1057 | 400 | 0.6442 | 0.4069 | -2.8694 | 0.8282 | 3.2763 | -414.2482 | -340.2375 | -64.6611 | -65.4554 |
| 0.1427 | 1.2440 | 450 | 0.6730 | 1.1133 | -1.9897 | 0.8131 | 3.1030 | -409.8499 | -336.7056 | -65.8348 | -66.7287 |
| 0.1022 | 1.3822 | 500 | 0.6409 | 0.9778 | -2.1491 | 0.8235 | 3.1270 | -410.6469 | -337.3829 | -66.9816 | -67.8481 |
### Framework versions
- Transformers 4.45.0
- Pytorch 2.4.0+cu124
- Datasets 3.2.0
- Tokenizers 0.20.3
|