|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.integrations import use_kernel_forward_from_hub |
|
from transformers.generation.logits_process import LogitsProcessor, LogitsProcessorList |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from typing import List, Iterable, Optional, Union, Tuple |
|
from collections import deque |
|
import os |
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging |
|
from .configuration_hyperclovax import HyperCLOVAXConfig |
|
if is_torch_flex_attn_available(): |
|
from torch.nn.attention.flex_attention import BlockMask |
|
|
|
from transformers.integrations.flex_attention import make_flex_block_causal_mask |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class DeepConfEOSLogitsProcessor(LogitsProcessor): |
|
""" |
|
Per-sample early stop: at each step, compute token_conf = mean(logprob of top-r), |
|
maintain group_conf = mean of last `window` token_conf; if group_conf < threshold, |
|
force EOS for THAT sample by setting EOS logprob=0 and others to -inf. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
eos_token_ids: List[int], |
|
window: int = 512, |
|
top_r: int = 5, |
|
threshold: float = -3.5, |
|
warmup_tokens: int = 0, |
|
prefer_eos_ids: Optional[List[int]] = None, |
|
require_prev_id: Optional[int] = None, |
|
im_end_id: Optional[int] = None, |
|
require_im_end_count: int = 0, |
|
threshold_think: Optional[float] = None, |
|
threshold_answer: Optional[float] = None, |
|
): |
|
self.eos_ids: List[int] = sorted({int(i) for i in (eos_token_ids or []) if i is not None and i >= 0}) |
|
self.window: int = max(int(window), 1) |
|
self.top_r: int = max(int(top_r), 1) |
|
self.threshold: float = float(threshold) |
|
self.warmup_tokens: int = max(int(warmup_tokens), 0) |
|
self.prefer_eos_ids: List[int] = sorted({int(i) for i in (prefer_eos_ids or []) if i is not None and i >= 0}) |
|
self.require_prev_id = require_prev_id |
|
self.im_end_id = im_end_id |
|
self.require_im_end_count = max(int(require_im_end_count), 0) |
|
self.threshold_think = threshold_think |
|
self.threshold_answer = threshold_answer |
|
self._base_im_end_counts: Optional[List[int]] = None |
|
self._buffers: Optional[List[deque]] = None |
|
self._verbose: bool = os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE", "0").strip().lower() in {"1", "on", "true"} |
|
self._every: int = max(int(os.getenv("HYPERCLOVA_DEEPCONF_REPORT_EVERY", "64")), 1) |
|
self._tick: int = 0 |
|
self._stops: int = 0 |
|
|
|
def _ensure(self, bsz: int) -> None: |
|
if self._buffers is None or len(self._buffers) != bsz: |
|
self._buffers = [deque(maxlen=self.window) for _ in range(bsz)] |
|
|
|
@torch.no_grad() |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
bsz, vocab = scores.shape |
|
self._ensure(bsz) |
|
|
|
|
|
gen_counts = [0] * bsz |
|
if self.im_end_id is not None and input_ids is not None: |
|
|
|
curr = (input_ids == self.im_end_id).sum(dim=1).tolist() |
|
if self._base_im_end_counts is None: |
|
self._base_im_end_counts = curr[:] |
|
gen_counts = [curr[i] - self._base_im_end_counts[i] for i in range(bsz)] |
|
|
|
logprobs = torch.log_softmax(scores, dim=-1) |
|
k = min(self.top_r, vocab) |
|
token_conf = torch.topk(logprobs, k=k, dim=-1).values.mean(dim=-1).tolist() |
|
|
|
for i, c in enumerate(token_conf): |
|
buf = self._buffers[i] |
|
buf.append(c) |
|
group_conf = sum(buf) / len(buf) |
|
if len(buf) < self.warmup_tokens: |
|
continue |
|
|
|
|
|
if self.threshold_think is not None and gen_counts[i] <= 0: |
|
thr = self.threshold_think |
|
elif self.threshold_answer is not None and gen_counts[i] >= 1: |
|
thr = self.threshold_answer |
|
else: |
|
thr = self.threshold |
|
|
|
|
|
im_end_gate_ok = gen_counts[i] >= self.require_im_end_count |
|
|
|
|
|
prev_ok = True |
|
if self.require_prev_id is not None and input_ids is not None and input_ids.size(1) > 0: |
|
prev_ok = int(input_ids[i, -1].item()) == self.require_prev_id |
|
|
|
if group_conf < thr and (self.prefer_eos_ids or self.eos_ids) and im_end_gate_ok and prev_ok: |
|
targets = self.prefer_eos_ids if self.prefer_eos_ids else self.eos_ids |
|
scores[i].fill_(-float("inf")) |
|
for eid in targets: |
|
if 0 <= eid < vocab: |
|
scores[i, eid] = 0.0 |
|
self._stops += 1 |
|
|
|
if self._verbose: |
|
self._tick += 1 |
|
if self._tick % self._every == 0: |
|
try: |
|
gcs = [(sum(b) / len(b)) if b else float("nan") for b in (self._buffers or [])] |
|
valid = [x for x in gcs if not (x != x)] |
|
mean_gc = float(sum(valid) / max(1, len(valid))) |
|
except Exception: |
|
mean_gc = float("nan") |
|
|
|
if os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE_ATTACH", "0") in {"1", "on", "true"}: |
|
print(f"[DeepConf] step={self._tick} mean_gc={mean_gc:.4f} stops={self._stops}") |
|
return scores |
|
|
|
|
|
def deepconf_lgc_from_scores(scores_list: Iterable[torch.Tensor], top_r: int = 5, window: int = 2048) -> float: |
|
tensors = [s for s in scores_list] |
|
if not tensors: return float("-inf") |
|
with torch.no_grad(): |
|
vals = [ |
|
torch.topk(torch.log_softmax(s, dim=-1), k=min(top_r, s.size(-1)), dim=-1).values.mean(dim=-1) |
|
for s in tensors |
|
] |
|
conf = torch.stack(vals).squeeze(-1) |
|
w = min(int(window), conf.numel()) |
|
kernel = torch.ones(1,1,w, device=conf.device) / w |
|
run = torch.nn.functional.conv1d(conf.view(1,1,-1), weight=kernel).squeeze() |
|
return float(run.min().item()) |
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
class HyperCLOVAXRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
HyperCLOVAXRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
ALL_LAYERNORM_LAYERS.append(HyperCLOVAXRMSNorm) |
|
class HyperCLOVAXRotaryEmbedding(nn.Module): |
|
def __init__(self, config: HyperCLOVAXConfig, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class HyperCLOVAXMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class HyperCLOVAXAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: HyperCLOVAXConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = getattr(config, "attention_multiplier", self.head_dim**-0.5) |
|
self.attention_dropout = config.attention_dropout |
|
self.is_causal = True |
|
|
|
self.q_proj = nn.Linear( |
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.v_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.o_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
|
if self.config._attn_implementation != "eager": |
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): |
|
logger.warning_once( |
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " |
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
else: |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output, attn_weights |
|
|
|
|
|
class HyperCLOVAXDecoderLayer(GradientCheckpointingLayer): |
|
def __init__(self, config: HyperCLOVAXConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = HyperCLOVAXAttention(config=config, layer_idx=layer_idx) |
|
|
|
self.mlp = HyperCLOVAXMLP(config) |
|
self.input_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.use_post_norm = getattr(config, "use_post_norm", False) |
|
|
|
|
|
if self.use_post_norm: |
|
self.post_norm1 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_norm2 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.residual_multiplier = getattr(config, "residual_multiplier", 1.0) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
if self.use_post_norm: |
|
hidden_states = self.post_norm1(hidden_states) |
|
|
|
hidden_states = residual + hidden_states * self.residual_multiplier |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
if self.use_post_norm: |
|
hidden_states = self.post_norm2(hidden_states) |
|
|
|
hidden_states = residual + hidden_states * self.residual_multiplier |
|
|
|
outputs = (hidden_states,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
@auto_docstring |
|
class HyperCLOVAXPreTrainedModel(PreTrainedModel): |
|
config_class = HyperCLOVAXConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["HyperCLOVAXDecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, HyperCLOVAXRMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
@auto_docstring |
|
class HyperCLOVAXModel(HyperCLOVAXPreTrainedModel): |
|
def __init__(self, config: HyperCLOVAXConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[HyperCLOVAXDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = HyperCLOVAXRotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.embedding_multiplier = getattr(config, "embedding_multiplier", 1.0) |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> BaseModelOutputWithPast: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
inputs_embeds = inputs_embeds * self.embedding_multiplier |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: Union[torch.Tensor, "BlockMask"], |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool = False, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and (attention_mask == 0.0).any(): |
|
return attention_mask |
|
return None |
|
if self.config._attn_implementation == "flex_attention": |
|
if isinstance(attention_mask, torch.Tensor): |
|
attention_mask = make_flex_block_causal_mask(attention_mask) |
|
return attention_mask |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype = input_tensor.dtype |
|
sequence_length = input_tensor.shape[1] |
|
if using_compilable_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu", "npu"] |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
**kwargs, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape |
|
`(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, |
|
to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
|
|
@auto_docstring |
|
class HyperCLOVAXForCausalLM(HyperCLOVAXPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = HyperCLOVAXModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.logits_scaling = getattr(config, "logits_scaling", 1.0) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
|
|
def _dc_collect_eos(self, explicit: Optional[Union[int, List[int]]] = None, **kwargs) -> List[int]: |
|
ids: List[int] = [] |
|
if explicit is not None: |
|
ids.extend([int(x) for x in (explicit if isinstance(explicit, (list,tuple)) else [explicit])]) |
|
else: |
|
if getattr(self.config, "eos_token_id", None) is not None: |
|
ids.append(int(self.config.eos_token_id)) |
|
if getattr(self.config, "eos_token_id_list", None): |
|
ids.extend(int(x) for x in self.config.eos_token_id_list if x is not None) |
|
extra = os.getenv("HYPERCLOVA_DEEPCONF_EOS_IDS", "").strip() |
|
if extra: |
|
ids.extend(int(tok) for tok in extra.split(",") if tok.strip().isdigit()) |
|
return sorted({i for i in ids if i >= 0}) |
|
|
|
def _dc_enabled(self) -> bool: |
|
enabled = True |
|
env = os.getenv("HYPERCLOVA_DEEPCONF", "").strip().lower() |
|
if env in {"0","off","false"}: enabled = False |
|
elif env in {"1","on","true"}: enabled = True |
|
cfg_en = getattr(self.config, "deepconf_enable", None) |
|
if cfg_en is not None: |
|
enabled = bool(cfg_en) |
|
if getattr(self.config, "deepconf_disable", False): |
|
enabled = False |
|
return enabled |
|
|
|
def _dc_params(self) -> Tuple[int,int,float,int]: |
|
def env_int(k, d): v=os.getenv(k); return int(v) if v not in (None,"") else d |
|
def env_flt(k, d): v=os.getenv(k); return float(v) if v not in (None,"") else d |
|
window = env_int("HYPERCLOVA_DEEPCONF_WINDOW", getattr(self.config, "deepconf_window", 512)) |
|
top_r = env_int("HYPERCLOVA_DEEPCONF_TOPR", getattr(self.config, "deepconf_top_r", 5)) |
|
thr = env_flt("HYPERCLOVA_DEEPCONF_THRESH", getattr(self.config, "deepconf_threshold", -3.5)) |
|
warmup = env_int("HYPERCLOVA_DEEPCONF_WARMUP", getattr(self.config, "deepconf_warmup_tokens", 0)) |
|
return window, top_r, thr, warmup |
|
|
|
def deepconf_generate(self, *args, |
|
eos_token_id: Optional[Union[int, List[int]]] = None, |
|
window: int = 512, top_r: int = 5, threshold: float = -3.5, |
|
warmup_tokens: int = 0, |
|
**kwargs): |
|
|
|
prefer_ids: List[int] = [] |
|
tok = kwargs.get("tokenizer", None) |
|
stop_strings = kwargs.get("stop_strings", None) |
|
if tok is not None and stop_strings: |
|
for s in stop_strings: |
|
try: |
|
eid = tok.convert_tokens_to_ids(s) |
|
if isinstance(eid, int) and eid >= 0: |
|
prefer_ids.append(int(eid)); continue |
|
except Exception: |
|
pass |
|
try: |
|
enc = tok.encode(s, add_special_tokens=False) |
|
if isinstance(enc, list) and len(enc) == 1: |
|
prefer_ids.append(int(enc[0])) |
|
except Exception: |
|
pass |
|
lp: LogitsProcessorList = kwargs.pop("logits_processor", None) or LogitsProcessorList() |
|
lp.append( |
|
DeepConfEOSLogitsProcessor( |
|
self._dc_collect_eos(eos_token_id, **kwargs), |
|
window, top_r, threshold, |
|
warmup_tokens=warmup_tokens, |
|
prefer_eos_ids=prefer_ids or None |
|
) |
|
) |
|
kwargs["logits_processor"] = lp |
|
return super().generate(*args, **kwargs) |
|
|
|
|
|
def generate(self, *args, **kwargs): |
|
if self._dc_enabled(): |
|
eos_ids = self._dc_collect_eos(kwargs.get("eos_token_id", None), **kwargs) |
|
|
|
prefer_ids: List[int] = [] |
|
tok = kwargs.get("tokenizer", None) |
|
stop_strings = kwargs.get("stop_strings", None) |
|
im_end_id = None |
|
if tok is not None and stop_strings: |
|
for s in stop_strings: |
|
try: |
|
eid = tok.convert_tokens_to_ids(s) |
|
if isinstance(eid, int) and eid >= 0: |
|
prefer_ids.append(int(eid)) |
|
continue |
|
except Exception: |
|
pass |
|
try: |
|
enc = tok.encode(s, add_special_tokens=False) |
|
if isinstance(enc, list) and len(enc) == 1: |
|
prefer_ids.append(int(enc[0])) |
|
except Exception: |
|
pass |
|
|
|
|
|
if tok is not None: |
|
try: |
|
im_end_id = tok.convert_tokens_to_ids("<|im_end|>") |
|
if not isinstance(im_end_id, int) or im_end_id < 0: |
|
im_end_id = None |
|
except Exception: |
|
im_end_id = None |
|
|
|
if eos_ids: |
|
window, top_r, thr, warmup = self._dc_params() |
|
|
|
def env_int(k, d): |
|
v = os.getenv(k) |
|
return int(v) if v not in (None, "") else d |
|
|
|
|
|
require_count = env_int( |
|
"HYPERCLOVA_DEEPCONF_REQUIRE_IM_END_COUNT", 2 if (prefer_ids and im_end_id is not None) else 0 |
|
) |
|
thr_think_str = os.getenv("HYPERCLOVA_DEEPCONF_THRESH_THINK", None) |
|
thr_ans_str = os.getenv("HYPERCLOVA_DEEPCONF_THRESH_ANS", None) |
|
thr_think = float(thr_think_str) if thr_think_str is not None and thr_think_str.strip() != "" else None |
|
thr_ans = float(thr_ans_str) if thr_ans_str is not None and thr_ans_str.strip() != "" else None |
|
|
|
|
|
require_prev = None |
|
if os.getenv("HYPERCLOVA_DEEPCONF_REQUIRE_IM_END", "0").lower() in {"1", "on", "true"}: |
|
require_prev = im_end_id |
|
|
|
lp: LogitsProcessorList = kwargs.pop("logits_processor", None) or LogitsProcessorList() |
|
|
|
if os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE_ATTACH", "0") in {"1", "on", "true"}: |
|
print( |
|
f"[DeepConf] attach window={window} top_r={top_r} thr={thr} warmup={warmup} eos={eos_ids} prefer={prefer_ids} " |
|
f"require_prev={require_prev} im_end_id={im_end_id} require_count={require_count} thr_think={thr_think} thr_ans={thr_ans}" |
|
) |
|
|
|
lp.append( |
|
DeepConfEOSLogitsProcessor( |
|
eos_ids, |
|
window, |
|
top_r, |
|
thr, |
|
warmup_tokens=warmup, |
|
prefer_eos_ids=prefer_ids or None, |
|
require_prev_id=require_prev, |
|
im_end_id=im_end_id, |
|
require_im_end_count=require_count, |
|
threshold_think=thr_think, |
|
threshold_answer=thr_ans, |
|
) |
|
) |
|
kwargs["logits_processor"] = lp |
|
return super().generate(*args, **kwargs) |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**kwargs: Unpack[KwargsForCausalLM], |
|
) -> CausalLMOutputWithPast: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, HyperCLOVAXForCausalLM |
|
|
|
>>> model = HyperCLOVAXForCausalLM.from_pretrained("naver-hyperclovax/{model_name}") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("naver-hyperclovax/{model_name}") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me? |
|
I'm not conscious, but I can talk to you." |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) * self.logits_scaling |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@auto_docstring( |
|
custom_intro=""" |
|
The HyperCLOVAX Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`HyperCLOVAXForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""" |
|
) |
|
class HyperCLOVAXForSequenceClassification(HyperCLOVAXPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = HyperCLOVAXModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) -> SequenceClassifierOutputWithPast: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
|
|
transformer_outputs: BaseModelOutputWithPast = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
hidden_states = transformer_outputs.last_hidden_state |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
last_non_pad_token = -1 |
|
elif input_ids is not None: |
|
|
|
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) |
|
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) |
|
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) |
|
else: |
|
last_non_pad_token = -1 |
|
logger.warning_once( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@auto_docstring |
|
class HyperCLOVAXForQuestionAnswering(HyperCLOVAXPreTrainedModel): |
|
base_model_prefix = "transformer" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = HyperCLOVAXModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, 2) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.transformer.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.transformer.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
**kwargs, |
|
) -> QuestionAnsweringModelOutput: |
|
outputs: BaseModelOutputWithPast = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
sequence_output = outputs.last_hidden_state |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
loss = None |
|
if start_positions is not None and end_positions is not None: |
|
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@auto_docstring |
|
class HyperCLOVAXForTokenClassification(HyperCLOVAXPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = HyperCLOVAXModel(config) |
|
if getattr(config, "classifier_dropout", None) is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif getattr(config, "hidden_dropout", None) is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) -> TokenClassifierOutput: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
sequence_output = outputs.last_hidden_state |
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.score(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits, labels, self.config) |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
__all__ = [ |
|
"HyperCLOVAXForCausalLM", |
|
"HyperCLOVAXModel", |
|
"HyperCLOVAXPreTrainedModel", |
|
"HyperCLOVAXForSequenceClassification", |
|
"HyperCLOVAXForQuestionAnswering", |
|
"HyperCLOVAXForTokenClassification", |
|
] |
|
|