HyperCLOVAX-SEED-Think-DeepConf-14B / modeling_hyperclovax.py
sigridjineth's picture
Upload 2 files
53500ff verified
# coding=utf-8
# This file was created for the HyperCLOVA X SEED 14B Think architecture.
# partially copied and modified from https://github.com/huggingface/transformers
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.integrations import use_kernel_forward_from_hub
from transformers.generation.logits_process import LogitsProcessor, LogitsProcessorList
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from typing import List, Iterable, Optional, Union, Tuple
from collections import deque
import os
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
from .configuration_hyperclovax import HyperCLOVAXConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from transformers.integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
# ================= DeepConf: confidence-based online early stop =================
class DeepConfEOSLogitsProcessor(LogitsProcessor):
"""
Per-sample early stop: at each step, compute token_conf = mean(logprob of top-r),
maintain group_conf = mean of last `window` token_conf; if group_conf < threshold,
force EOS for THAT sample by setting EOS logprob=0 and others to -inf.
"""
def __init__(
self,
eos_token_ids: List[int],
window: int = 512,
top_r: int = 5,
threshold: float = -3.5,
warmup_tokens: int = 0,
prefer_eos_ids: Optional[List[int]] = None,
require_prev_id: Optional[int] = None,
im_end_id: Optional[int] = None,
require_im_end_count: int = 0,
threshold_think: Optional[float] = None,
threshold_answer: Optional[float] = None,
):
self.eos_ids: List[int] = sorted({int(i) for i in (eos_token_ids or []) if i is not None and i >= 0})
self.window: int = max(int(window), 1)
self.top_r: int = max(int(top_r), 1)
self.threshold: float = float(threshold)
self.warmup_tokens: int = max(int(warmup_tokens), 0)
self.prefer_eos_ids: List[int] = sorted({int(i) for i in (prefer_eos_ids or []) if i is not None and i >= 0})
self.require_prev_id = require_prev_id
self.im_end_id = im_end_id
self.require_im_end_count = max(int(require_im_end_count), 0)
self.threshold_think = threshold_think
self.threshold_answer = threshold_answer
self._base_im_end_counts: Optional[List[int]] = None
self._buffers: Optional[List[deque]] = None
self._verbose: bool = os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE", "0").strip().lower() in {"1", "on", "true"}
self._every: int = max(int(os.getenv("HYPERCLOVA_DEEPCONF_REPORT_EVERY", "64")), 1)
self._tick: int = 0
self._stops: int = 0
def _ensure(self, bsz: int) -> None:
if self._buffers is None or len(self._buffers) != bsz:
self._buffers = [deque(maxlen=self.window) for _ in range(bsz)]
@torch.no_grad()
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
bsz, vocab = scores.shape
self._ensure(bsz)
# --- im_end count (only in generated part) ---
gen_counts = [0] * bsz
if self.im_end_id is not None and input_ids is not None:
# Count im_end in the whole context
curr = (input_ids == self.im_end_id).sum(dim=1).tolist()
if self._base_im_end_counts is None:
self._base_im_end_counts = curr[:] # Set baseline
gen_counts = [curr[i] - self._base_im_end_counts[i] for i in range(bsz)]
logprobs = torch.log_softmax(scores, dim=-1)
k = min(self.top_r, vocab)
token_conf = torch.topk(logprobs, k=k, dim=-1).values.mean(dim=-1).tolist()
for i, c in enumerate(token_conf):
buf = self._buffers[i]
buf.append(c)
group_conf = sum(buf) / len(buf)
if len(buf) < self.warmup_tokens:
continue
# phase-aware threshold
if self.threshold_think is not None and gen_counts[i] <= 0:
thr = self.threshold_think
elif self.threshold_answer is not None and gen_counts[i] >= 1:
thr = self.threshold_answer
else:
thr = self.threshold
# ChatML protection: only force stop after enough im_end tokens
im_end_gate_ok = gen_counts[i] >= self.require_im_end_count
# (Optional) previous token gate
prev_ok = True
if self.require_prev_id is not None and input_ids is not None and input_ids.size(1) > 0:
prev_ok = int(input_ids[i, -1].item()) == self.require_prev_id
if group_conf < thr and (self.prefer_eos_ids or self.eos_ids) and im_end_gate_ok and prev_ok:
targets = self.prefer_eos_ids if self.prefer_eos_ids else self.eos_ids
scores[i].fill_(-float("inf"))
for eid in targets:
if 0 <= eid < vocab:
scores[i, eid] = 0.0
self._stops += 1
if self._verbose:
self._tick += 1
if self._tick % self._every == 0:
try:
gcs = [(sum(b) / len(b)) if b else float("nan") for b in (self._buffers or [])]
valid = [x for x in gcs if not (x != x)]
mean_gc = float(sum(valid) / max(1, len(valid)))
except Exception:
mean_gc = float("nan")
if os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE_ATTACH", "0") in {"1", "on", "true"}:
print(f"[DeepConf] step={self._tick} mean_gc={mean_gc:.4f} stops={self._stops}")
return scores
# (optional) Offline helper: Lowest Group Confidence (LGC)
def deepconf_lgc_from_scores(scores_list: Iterable[torch.Tensor], top_r: int = 5, window: int = 2048) -> float:
tensors = [s for s in scores_list]
if not tensors: return float("-inf")
with torch.no_grad():
vals = [
torch.topk(torch.log_softmax(s, dim=-1), k=min(top_r, s.size(-1)), dim=-1).values.mean(dim=-1)
for s in tensors
] # each (B,)
conf = torch.stack(vals).squeeze(-1) # (T,) if B=1
w = min(int(window), conf.numel())
kernel = torch.ones(1,1,w, device=conf.device) / w
run = torch.nn.functional.conv1d(conf.view(1,1,-1), weight=kernel).squeeze()
return float(run.min().item())
# ==============================================================================
@use_kernel_forward_from_hub("RMSNorm")
class HyperCLOVAXRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
HyperCLOVAXRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
ALL_LAYERNORM_LAYERS.append(HyperCLOVAXRMSNorm)
class HyperCLOVAXRotaryEmbedding(nn.Module):
def __init__(self, config: HyperCLOVAXConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class HyperCLOVAXMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class HyperCLOVAXAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: HyperCLOVAXConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = getattr(config, "attention_multiplier", self.head_dim**-0.5) # MuP
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class HyperCLOVAXDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: HyperCLOVAXConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = HyperCLOVAXAttention(config=config, layer_idx=layer_idx)
self.mlp = HyperCLOVAXMLP(config)
self.input_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.use_post_norm = getattr(config, "use_post_norm", False)
# Peri-LN (post-norm)
if self.use_post_norm:
self.post_norm1 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_norm2 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.residual_multiplier = getattr(config, "residual_multiplier", 1.0) # MuP
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
if self.use_post_norm: # Peri-LN
hidden_states = self.post_norm1(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier # MuP
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if self.use_post_norm: # Peri-LN
hidden_states = self.post_norm2(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier # MuP
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
@auto_docstring
class HyperCLOVAXPreTrainedModel(PreTrainedModel):
config_class = HyperCLOVAXConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["HyperCLOVAXDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, HyperCLOVAXRMSNorm):
module.weight.data.fill_(1.0)
@auto_docstring
class HyperCLOVAXModel(HyperCLOVAXPreTrainedModel):
def __init__(self, config: HyperCLOVAXConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[HyperCLOVAXDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = HyperCLOVAXRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
# MuP
self.embedding_multiplier = getattr(config, "embedding_multiplier", 1.0)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = inputs_embeds * self.embedding_multiplier # MuP
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: Union[torch.Tensor, "BlockMask"],
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype = input_tensor.dtype
sequence_length = input_tensor.shape[1]
if using_compilable_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
@auto_docstring
class HyperCLOVAXForCausalLM(HyperCLOVAXPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = HyperCLOVAXModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.logits_scaling = getattr(config, "logits_scaling", 1.0)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# -------- DeepConf helpers ----------
def _dc_collect_eos(self, explicit: Optional[Union[int, List[int]]] = None, **kwargs) -> List[int]:
ids: List[int] = []
if explicit is not None:
ids.extend([int(x) for x in (explicit if isinstance(explicit, (list,tuple)) else [explicit])])
else:
if getattr(self.config, "eos_token_id", None) is not None:
ids.append(int(self.config.eos_token_id))
if getattr(self.config, "eos_token_id_list", None):
ids.extend(int(x) for x in self.config.eos_token_id_list if x is not None)
extra = os.getenv("HYPERCLOVA_DEEPCONF_EOS_IDS", "").strip()
if extra:
ids.extend(int(tok) for tok in extra.split(",") if tok.strip().isdigit())
return sorted({i for i in ids if i >= 0})
def _dc_enabled(self) -> bool:
enabled = True
env = os.getenv("HYPERCLOVA_DEEPCONF", "").strip().lower()
if env in {"0","off","false"}: enabled = False
elif env in {"1","on","true"}: enabled = True
cfg_en = getattr(self.config, "deepconf_enable", None)
if cfg_en is not None:
enabled = bool(cfg_en) # If config is specified, it takes precedence
if getattr(self.config, "deepconf_disable", False):
enabled = False # Force OFF flag
return enabled
def _dc_params(self) -> Tuple[int,int,float,int]:
def env_int(k, d): v=os.getenv(k); return int(v) if v not in (None,"") else d
def env_flt(k, d): v=os.getenv(k); return float(v) if v not in (None,"") else d
window = env_int("HYPERCLOVA_DEEPCONF_WINDOW", getattr(self.config, "deepconf_window", 512))
top_r = env_int("HYPERCLOVA_DEEPCONF_TOPR", getattr(self.config, "deepconf_top_r", 5))
thr = env_flt("HYPERCLOVA_DEEPCONF_THRESH", getattr(self.config, "deepconf_threshold", -3.5))
warmup = env_int("HYPERCLOVA_DEEPCONF_WARMUP", getattr(self.config, "deepconf_warmup_tokens", 0))
return window, top_r, thr, warmup
def deepconf_generate(self, *args,
eos_token_id: Optional[Union[int, List[int]]] = None,
window: int = 512, top_r: int = 5, threshold: float = -3.5,
warmup_tokens: int = 0,
**kwargs):
# Prefer ChatML stop strings if tokenizer+stop_strings are provided
prefer_ids: List[int] = []
tok = kwargs.get("tokenizer", None)
stop_strings = kwargs.get("stop_strings", None)
if tok is not None and stop_strings:
for s in stop_strings:
try:
eid = tok.convert_tokens_to_ids(s)
if isinstance(eid, int) and eid >= 0:
prefer_ids.append(int(eid)); continue
except Exception:
pass
try:
enc = tok.encode(s, add_special_tokens=False)
if isinstance(enc, list) and len(enc) == 1:
prefer_ids.append(int(enc[0]))
except Exception:
pass
lp: LogitsProcessorList = kwargs.pop("logits_processor", None) or LogitsProcessorList()
lp.append(
DeepConfEOSLogitsProcessor(
self._dc_collect_eos(eos_token_id, **kwargs),
window, top_r, threshold,
warmup_tokens=warmup_tokens,
prefer_eos_ids=prefer_ids or None
)
)
kwargs["logits_processor"] = lp
return super().generate(*args, **kwargs)
# Override generate() to be default ON (auto-attach DeepConf; merge with external lps)
def generate(self, *args, **kwargs):
if self._dc_enabled():
eos_ids = self._dc_collect_eos(kwargs.get("eos_token_id", None), **kwargs)
# Prefer ChatML end tokens if provided
prefer_ids: List[int] = []
tok = kwargs.get("tokenizer", None)
stop_strings = kwargs.get("stop_strings", None)
im_end_id = None
if tok is not None and stop_strings:
for s in stop_strings:
try:
eid = tok.convert_tokens_to_ids(s)
if isinstance(eid, int) and eid >= 0:
prefer_ids.append(int(eid))
continue
except Exception:
pass
try:
enc = tok.encode(s, add_special_tokens=False)
if isinstance(enc, list) and len(enc) == 1:
prefer_ids.append(int(enc[0]))
except Exception:
pass
# For ChatML protection: extract <|im_end|> id
if tok is not None:
try:
im_end_id = tok.convert_tokens_to_ids("<|im_end|>")
if not isinstance(im_end_id, int) or im_end_id < 0:
im_end_id = None
except Exception:
im_end_id = None
if eos_ids:
window, top_r, thr, warmup = self._dc_params()
def env_int(k, d):
v = os.getenv(k)
return int(v) if v not in (None, "") else d
# Phase-aware params from ENV
require_count = env_int(
"HYPERCLOVA_DEEPCONF_REQUIRE_IM_END_COUNT", 2 if (prefer_ids and im_end_id is not None) else 0
)
thr_think_str = os.getenv("HYPERCLOVA_DEEPCONF_THRESH_THINK", None)
thr_ans_str = os.getenv("HYPERCLOVA_DEEPCONF_THRESH_ANS", None)
thr_think = float(thr_think_str) if thr_think_str is not None and thr_think_str.strip() != "" else None
thr_ans = float(thr_ans_str) if thr_ans_str is not None and thr_ans_str.strip() != "" else None
# require_prev_id is deprecated in favor of require_im_end_count, setting to None as recommended.
require_prev = None
if os.getenv("HYPERCLOVA_DEEPCONF_REQUIRE_IM_END", "0").lower() in {"1", "on", "true"}: # Keep for BC, but default off
require_prev = im_end_id
lp: LogitsProcessorList = kwargs.pop("logits_processor", None) or LogitsProcessorList()
if os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE_ATTACH", "0") in {"1", "on", "true"}:
print(
f"[DeepConf] attach window={window} top_r={top_r} thr={thr} warmup={warmup} eos={eos_ids} prefer={prefer_ids} "
f"require_prev={require_prev} im_end_id={im_end_id} require_count={require_count} thr_think={thr_think} thr_ans={thr_ans}"
)
lp.append(
DeepConfEOSLogitsProcessor(
eos_ids,
window,
top_r,
thr,
warmup_tokens=warmup,
prefer_eos_ids=prefer_ids or None,
require_prev_id=require_prev,
im_end_id=im_end_id,
require_im_end_count=require_count,
threshold_think=thr_think,
threshold_answer=thr_ans,
)
)
kwargs["logits_processor"] = lp
return super().generate(*args, **kwargs)
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, HyperCLOVAXForCausalLM
>>> model = HyperCLOVAXForCausalLM.from_pretrained("naver-hyperclovax/{model_name}")
>>> tokenizer = AutoTokenizer.from_pretrained("naver-hyperclovax/{model_name}")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?
I'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
# MuP
logits = self.lm_head(hidden_states[:, slice_indices, :]) * self.logits_scaling
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@auto_docstring(
custom_intro="""
The HyperCLOVAX Model transformer with a sequence classification head on top (linear layer).
[`HyperCLOVAXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
"""
)
class HyperCLOVAXForSequenceClassification(HyperCLOVAXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = HyperCLOVAXModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@auto_docstring
class HyperCLOVAXForQuestionAnswering(HyperCLOVAXPreTrainedModel):
base_model_prefix = "transformer"
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->HyperCLOVAX
def __init__(self, config):
super().__init__(config)
self.transformer = HyperCLOVAXModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.transformer.embed_tokens
def set_input_embeddings(self, value):
self.transformer.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs,
) -> QuestionAnsweringModelOutput:
outputs: BaseModelOutputWithPast = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@auto_docstring
class HyperCLOVAXForTokenClassification(HyperCLOVAXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = HyperCLOVAXModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"HyperCLOVAXForCausalLM",
"HyperCLOVAXModel",
"HyperCLOVAXPreTrainedModel",
"HyperCLOVAXForSequenceClassification",
"HyperCLOVAXForQuestionAnswering",
"HyperCLOVAXForTokenClassification",
]