--- library_name: peft license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - generated_from_trainer datasets: - data/training_data.json model-index: - name: output/llama_1e-5_r_256_alpha_512 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.7.0` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B-Instruct # optionally might have model_type or tokenizer_type model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: true load_in_4bit: false strict: false chat_template: llama3 datasets: - path: data/training_data.json type: chat_template field_messages: messages message_property_mappings: role: role content: content roles: user: - user assistant: - assistant dataset_prepared_path: val_set_size: 0.1 output_dir: ./output/llama_1e-5_r_256_alpha_512 sequence_len: 8000 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 256 lora_alpha: 512 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-review wandb_entity: wandb_watch: wandb_name: llama_1e-5_r_256_alpha_512 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 100 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 1 debug: deepspeed: deepspeed_3.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# output/llama_1e-5_r_256_alpha_512 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the data/training_data.json dataset. It achieves the following results on the evaluation set: - Loss: 13.8053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.8163 | 0.9995 | 491 | 13.8053 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0