Upload make-calibration_chat.py with huggingface_hub
Browse files- make-calibration_chat.py +56 -0
make-calibration_chat.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
|
4 |
+
MODEL_ID = "shisa-ai/shisa-v2-llama3.1-405b"
|
5 |
+
tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
|
6 |
+
|
7 |
+
ds = (
|
8 |
+
load_dataset('shisa-ai/shisa-v2-sharegpt', split='train')
|
9 |
+
.shuffle(seed=42)
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
def convert_sharegpt_to_chat_format(conversations):
|
14 |
+
"""
|
15 |
+
Convert ShareGPT format to standard chat format expected by chat templates.
|
16 |
+
ShareGPT typically has: [{"from": "human", "value": "..."}, {"from": "gpt", "value": "..."}]
|
17 |
+
Chat templates expect: [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
|
18 |
+
"""
|
19 |
+
chat_format = []
|
20 |
+
|
21 |
+
# Handle both 'from'/'value' and 'role'/'content' formats
|
22 |
+
for conv in conversations:
|
23 |
+
if "from" in conv and "value" in conv:
|
24 |
+
# ShareGPT format
|
25 |
+
role_map = {
|
26 |
+
"human": "user",
|
27 |
+
"gpt": "assistant",
|
28 |
+
"system": "system",
|
29 |
+
"user": "user", # Sometimes already in this format
|
30 |
+
"assistant": "assistant"
|
31 |
+
}
|
32 |
+
role = role_map.get(conv["from"], conv["from"])
|
33 |
+
chat_format.append({
|
34 |
+
"role": role,
|
35 |
+
"content": conv["value"]
|
36 |
+
})
|
37 |
+
elif "role" in conv and "content" in conv:
|
38 |
+
# Already in chat format
|
39 |
+
chat_format.append(conv)
|
40 |
+
else:
|
41 |
+
print(f"Warning: Unknown conversation format: {conv}")
|
42 |
+
continue
|
43 |
+
|
44 |
+
return chat_format
|
45 |
+
|
46 |
+
def to_chat_text(sample):
|
47 |
+
# sample["conversation"] is assumed to be a list of {"role": "...", "value": "..."} dicts
|
48 |
+
# Replace with the exact field names in your dataset.
|
49 |
+
conv = convert_sharegpt_to_chat_format(sample['conversations'])
|
50 |
+
return tok.apply_chat_template(conv, tokenize=False)
|
51 |
+
|
52 |
+
with open("calibration_chat.txt", "w", encoding="utf-8") as f:
|
53 |
+
for i, s in enumerate(ds):
|
54 |
+
f.write(to_chat_text(s) + "\n")
|
55 |
+
if i >= 4000: # ~1 M tokens for 405 B
|
56 |
+
break
|