Transformers
GGUF
imatrix
conversational
shisa-v2-llama3.1-405b-GGUF / make-calibration_chat.py
leonardlin's picture
Upload make-calibration_chat.py with huggingface_hub
e8f71f6 verified
from datasets import load_dataset
from transformers import AutoTokenizer
MODEL_ID = "shisa-ai/shisa-v2-llama3.1-405b"
tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
ds = (
load_dataset('shisa-ai/shisa-v2-sharegpt', split='train')
.shuffle(seed=42)
)
def convert_sharegpt_to_chat_format(conversations):
"""
Convert ShareGPT format to standard chat format expected by chat templates.
ShareGPT typically has: [{"from": "human", "value": "..."}, {"from": "gpt", "value": "..."}]
Chat templates expect: [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
"""
chat_format = []
# Handle both 'from'/'value' and 'role'/'content' formats
for conv in conversations:
if "from" in conv and "value" in conv:
# ShareGPT format
role_map = {
"human": "user",
"gpt": "assistant",
"system": "system",
"user": "user", # Sometimes already in this format
"assistant": "assistant"
}
role = role_map.get(conv["from"], conv["from"])
chat_format.append({
"role": role,
"content": conv["value"]
})
elif "role" in conv and "content" in conv:
# Already in chat format
chat_format.append(conv)
else:
print(f"Warning: Unknown conversation format: {conv}")
continue
return chat_format
def to_chat_text(sample):
# sample["conversation"] is assumed to be a list of {"role": "...", "value": "..."} dicts
# Replace with the exact field names in your dataset.
conv = convert_sharegpt_to_chat_format(sample['conversations'])
return tok.apply_chat_template(conv, tokenize=False)
with open("calibration_chat.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(ds):
f.write(to_chat_text(s) + "\n")
if i >= 4000: # ~1 M tokens for 405 B
break