metadata
base_model: shisa-ai/shisa-v2-llama3.1-405b
datasets:
- shisa-ai/shisa-v2-sharegpt
- shisa-ai/deepseekv3-ultrafeedback-armorm-dpo
language:
- ja
- en
- ko
- zh
library_name: transformers
license: llama3.1
model_name: shisa-v2-llama3.1-405b
quantized_by: leonardlin
About
This repo contains select GGUF quants of shisa-ai/shisa-v2-llama3.1-405b
- All quants were created with
b5503
of upstream llama.cpp - All quants are weighted/imatrix quants created from our shisa-ai/shisa-v2-sharegpt bilingual dataset on the fp16 model except for the Q8_0
- Files are pre-split at 45GB (below HF's 50GB upload limit). Modern llama.cpp builds should be able to load the sequential files automatically, but you can use
llama-gguf-split --merge
if you want to merge them back together
Provided Quants
Type | Size (GB) |
---|---|
IQ2_XXS | 155 |
IQ3_XS | 155 |
IQ3_M | 170 |
IQ4_XS | 202 |
Q4_K_M | 227 |
Q8_0 | 402 |
Graph by ikawrakow comparing some lower-quality quant PPL (lower is better) - via mradermacher:
Making Quants
# first you need an fp16 - setup llama.cpp python env and run something like
python convert_hf_to_gguf.py ~/.cache/huggingface/hub/models--shisa-ai--shisa-v2-llama3.1-405b/snapshots/71b83a7cb998c3a44f59c83a9928596ac348b9b5 --outfile shisa-v2-llama3.1-405b-fp16.gguf
# Create imatrix: using 4 x H200 you can load 88 layers, takes about 1h15m
CUDA_VISIBLE_DEVICES=4,5,6,7 build/bin/llama-imatrix -m shisa-v2-llama3.1-405b-fp16.gguf -f /data/quantize/shisa-v2-llama-3.1-405b/gguf/calibration_chat.txt -o imatrix.dat -c 512 -b 512 --chunks 100 -ngl 88
# create your imatrix quants
build/bin/llama-quantize --imatrix imatrix.dat shisa-v2-llama3.1-405b-fp16.gguf shisa-v2-llama3.1-405b-IQ3_XS.gguf IQ3_XS
# split the quants
build/bin/llama-gguf-split --split-max-size 45G shisa-v2-llama3.1-405b-IQ3_XS.gguf shisa-v2-llama3.1-405b-IQ3_XS
# upload (bash loop)
for f in shisa-v2-llama3.1-405b-IQ3_XS-0000*; do huggingface-cli upload shisa-ai/shisa-v2-llama3.1-405b-GGUF "$f"; done