shayekh commited on
Commit
e8f26f9
·
verified ·
1 Parent(s): 111fe3f

Add files using upload-large-folder tool

Browse files
added_tokens.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</paragraph>": 32013,
3
+ "<pad>": 32015,
4
+ "<paragraph>": 32005,
5
+ "[Continue to Use Evidence]": 32006,
6
+ "[Fully supported]": 32014,
7
+ "[Irrelevant]": 32011,
8
+ "[No Retrieval]": 32010,
9
+ "[No support / Contradictory]": 32003,
10
+ "[Partially supported]": 32000,
11
+ "[Relevant]": 32007,
12
+ "[Retrieval]": 32004,
13
+ "[Utility:1]": 32001,
14
+ "[Utility:2]": 32002,
15
+ "[Utility:3]": 32008,
16
+ "[Utility:4]": 32012,
17
+ "[Utility:5]": 32009
18
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "adapter_dim": 512,
3
+ "architectures": [
4
+ "modeling_openrag.LlamaForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "modeling_openrag.OpenRAGConfig",
8
+ "AutoModel": "modeling_openrag.LlamaModel",
9
+ "AutoModelForCausalLM": "modeling_openrag.LlamaForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 4096,
18
+ "model_type": "llama",
19
+ "moe_dtype": "bfloat16",
20
+ "moe_scaling": 0.25,
21
+ "num_attention_heads": 32,
22
+ "num_experts": 8,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 32,
25
+ "output_router_logits": false,
26
+ "pretraining_tp": 1,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_scaling": null,
29
+ "tie_word_embeddings": false,
30
+ "topk": 2,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.36.2",
33
+ "use_cache": true,
34
+ "vocab_size": 32016
35
+ }
configuration_openrag.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class OpenRAGConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`LlamaModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer encoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ pretraining_tp (`int`, *optional*, defaults to `1`):
62
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
63
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
64
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
65
+ issue](https://github.com/pytorch/pytorch/issues/76232).
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
70
+ just in case (e.g., 512 or 1024 or 2048).
71
+ initializer_range (`float`, *optional*, defaults to 0.02):
72
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
73
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
74
+ The epsilon used by the rms normalization layers.
75
+ use_cache (`bool`, *optional*, defaults to `True`):
76
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
77
+ relevant if `config.is_decoder=True`.
78
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
79
+ Whether to tie weight embeddings
80
+ rope_scaling (`Dict`, *optional*):
81
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
82
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
83
+ is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
84
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
85
+ these scaling strategies behave:
86
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
87
+ experimental feature, subject to breaking API changes in future versions.
88
+ num_experts (`int`, *optional*, defaults to 8):
89
+ The number of MoE expert
90
+ Example:
91
+
92
+ ```python
93
+ >>> from transformers import OpenRAGModel, OpenRAGConfig
94
+
95
+ >>> # Initializing a OpenRAG OpenRAG-7b style configuration
96
+ >>> configuration = OpenRAGConfig()
97
+
98
+ >>> # Initializing a model from the OpenRAG-7b style configuration
99
+ >>> model = OpenRAGModel(configuration)
100
+
101
+ >>> # Accessing the model configuration
102
+ >>> configuration = model.config
103
+ ```"""
104
+
105
+ model_type = "llama"
106
+ keys_to_ignore_at_inference = ["past_key_values"]
107
+
108
+ def __init__(
109
+ self,
110
+ vocab_size=32000,
111
+ hidden_size=4096,
112
+ intermediate_size=11008,
113
+ num_hidden_layers=32,
114
+ num_attention_heads=32,
115
+ num_key_value_heads=None,
116
+ hidden_act="silu",
117
+ max_position_embeddings=2048,
118
+ initializer_range=0.02,
119
+ rms_norm_eps=1e-6,
120
+ use_cache=True,
121
+ pad_token_id=None,
122
+ bos_token_id=1,
123
+ eos_token_id=2,
124
+ pretraining_tp=1,
125
+ tie_word_embeddings=False,
126
+ rope_scaling=None,
127
+ moe_dtype="bfloat16",
128
+ moe_scaling=0.25,
129
+ num_experts=8,
130
+ topk=1,
131
+ output_router_logits=True,
132
+ adapter_dim=64,
133
+ **kwargs,
134
+ ):
135
+ self.vocab_size = vocab_size
136
+ self.max_position_embeddings = max_position_embeddings
137
+ self.hidden_size = hidden_size
138
+ self.intermediate_size = intermediate_size
139
+ self.num_hidden_layers = num_hidden_layers
140
+ self.num_attention_heads = num_attention_heads
141
+
142
+ # for backward compatibility
143
+ if num_key_value_heads is None:
144
+ num_key_value_heads = num_attention_heads
145
+
146
+ self.num_key_value_heads = num_key_value_heads
147
+ self.hidden_act = hidden_act
148
+ self.initializer_range = initializer_range
149
+ self.rms_norm_eps = rms_norm_eps
150
+ self.pretraining_tp = pretraining_tp
151
+ self.use_cache = use_cache
152
+ self.rope_scaling = rope_scaling
153
+ self._rope_scaling_validation()
154
+
155
+ self.moe_dtype = moe_dtype
156
+ self.moe_scaling = moe_scaling
157
+ self.num_experts = num_experts
158
+ self.topk = topk
159
+ self.output_router_logits = output_router_logits
160
+
161
+ self.adapter_dim = adapter_dim
162
+
163
+ super().__init__(
164
+ pad_token_id=pad_token_id,
165
+ bos_token_id=bos_token_id,
166
+ eos_token_id=eos_token_id,
167
+ tie_word_embeddings=tie_word_embeddings,
168
+ **kwargs,
169
+ )
170
+
171
+ def _rope_scaling_validation(self):
172
+ """
173
+ Validate the `rope_scaling` configuration.
174
+ """
175
+ if self.rope_scaling is None:
176
+ return
177
+
178
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
179
+ raise ValueError(
180
+ "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
181
+ f"got {self.rope_scaling}"
182
+ )
183
+ rope_scaling_type = self.rope_scaling.get("type", None)
184
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
185
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
186
+ raise ValueError(
187
+ f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
188
+ )
189
+ if (
190
+ rope_scaling_factor is None
191
+ or not isinstance(rope_scaling_factor, float)
192
+ or rope_scaling_factor <= 1.0
193
+ ):
194
+ raise ValueError(
195
+ f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
196
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.36.2"
10
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54fff87743bc1ed66ff4f794ff75ac821657f54b9463c3e34548fea1b4496b90
3
+ size 4981720976
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d07157a7df73fe36898a6fd1301670838636d3b5e12f17beb9a04d843effd25
3
+ size 4943841888
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7af14d8d973e32f736afb075ae1dd25eeb737f7a74aa4325599ee53be3fcc3ac
3
+ size 4966994768
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58ecce49c370e2cb716890c20bbe031154d13f21ee52ff2a1e9e8aa816c51182
3
+ size 734228040
model.safetensors.index.json ADDED
@@ -0,0 +1,842 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15626674176
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.0.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.0.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.0.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.0.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.0.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.0.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
37
+ "model.layers.1.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
38
+ "model.layers.1.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.1.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.1.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
41
+ "model.layers.1.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.1.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
43
+ "model.layers.1.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.1.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
45
+ "model.layers.1.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.1.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
47
+ "model.layers.1.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
48
+ "model.layers.1.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
49
+ "model.layers.1.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
50
+ "model.layers.1.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
51
+ "model.layers.1.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
52
+ "model.layers.1.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
53
+ "model.layers.1.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
54
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
55
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
56
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
57
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
58
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
59
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
60
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.10.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.10.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.10.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.10.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.10.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.10.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.10.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.10.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.10.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.10.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.10.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.10.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.10.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.10.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.10.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.10.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.10.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.11.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.11.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.11.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.11.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.11.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.11.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.11.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.11.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.11.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.11.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.11.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.11.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.11.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.11.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.11.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.11.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.11.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.12.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.12.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.12.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.12.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.12.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.12.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.12.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.12.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.12.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.12.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.12.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.12.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.12.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.12.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.12.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.12.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.12.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.13.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.13.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.13.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.13.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.13.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.13.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.13.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.13.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.13.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.13.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.13.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.13.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.13.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.13.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.13.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.13.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.13.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.14.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.14.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.14.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.14.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.14.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.14.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.14.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.14.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.14.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
176
+ "model.layers.14.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.14.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
178
+ "model.layers.14.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.14.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.14.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
181
+ "model.layers.14.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.14.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.14.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
185
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
186
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
189
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
190
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
192
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.15.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
194
+ "model.layers.15.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
195
+ "model.layers.15.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.15.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
197
+ "model.layers.15.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
198
+ "model.layers.15.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
199
+ "model.layers.15.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
200
+ "model.layers.15.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
201
+ "model.layers.15.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
202
+ "model.layers.15.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
203
+ "model.layers.15.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
204
+ "model.layers.15.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
205
+ "model.layers.15.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
206
+ "model.layers.15.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
207
+ "model.layers.15.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
208
+ "model.layers.15.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
209
+ "model.layers.15.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
210
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
211
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
212
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
213
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
214
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
215
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
216
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
217
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
218
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
219
+ "model.layers.16.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
220
+ "model.layers.16.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
221
+ "model.layers.16.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
222
+ "model.layers.16.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
223
+ "model.layers.16.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
224
+ "model.layers.16.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
225
+ "model.layers.16.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.16.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
227
+ "model.layers.16.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
228
+ "model.layers.16.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
229
+ "model.layers.16.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
230
+ "model.layers.16.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
231
+ "model.layers.16.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
232
+ "model.layers.16.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.16.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
234
+ "model.layers.16.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
235
+ "model.layers.16.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
236
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
237
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
238
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
239
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
245
+ "model.layers.17.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.17.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.17.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
248
+ "model.layers.17.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.17.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.17.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.17.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.17.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.17.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.17.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.17.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.17.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.17.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.17.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.17.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.17.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.17.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
263
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
264
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
265
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
266
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
267
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
268
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
269
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
270
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
271
+ "model.layers.18.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
272
+ "model.layers.18.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
273
+ "model.layers.18.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
274
+ "model.layers.18.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
275
+ "model.layers.18.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
276
+ "model.layers.18.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
277
+ "model.layers.18.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
278
+ "model.layers.18.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
279
+ "model.layers.18.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
280
+ "model.layers.18.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
281
+ "model.layers.18.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
282
+ "model.layers.18.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
283
+ "model.layers.18.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
284
+ "model.layers.18.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.18.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.18.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
287
+ "model.layers.18.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.19.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.19.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.19.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.19.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.19.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00002-of-00004.safetensors",
302
+ "model.layers.19.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.19.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.19.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00002-of-00004.safetensors",
305
+ "model.layers.19.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.19.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00002-of-00004.safetensors",
307
+ "model.layers.19.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.19.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.19.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.19.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.19.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.19.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.19.mlp.moe_adapter.router.weight": "model-00002-of-00004.safetensors",
314
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
317
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
319
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
321
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
322
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
323
+ "model.layers.2.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
324
+ "model.layers.2.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
325
+ "model.layers.2.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
326
+ "model.layers.2.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.2.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.2.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
329
+ "model.layers.2.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.2.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
331
+ "model.layers.2.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.2.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
333
+ "model.layers.2.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
334
+ "model.layers.2.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
335
+ "model.layers.2.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
336
+ "model.layers.2.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
337
+ "model.layers.2.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
338
+ "model.layers.2.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
339
+ "model.layers.2.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
342
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
344
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
347
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
348
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
349
+ "model.layers.20.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
350
+ "model.layers.20.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
351
+ "model.layers.20.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
352
+ "model.layers.20.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
353
+ "model.layers.20.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
354
+ "model.layers.20.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
355
+ "model.layers.20.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
356
+ "model.layers.20.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
357
+ "model.layers.20.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
358
+ "model.layers.20.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
359
+ "model.layers.20.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
360
+ "model.layers.20.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
361
+ "model.layers.20.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
362
+ "model.layers.20.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
363
+ "model.layers.20.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
364
+ "model.layers.20.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
365
+ "model.layers.20.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
366
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
367
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
368
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
369
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
370
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
371
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
372
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
373
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
374
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
375
+ "model.layers.21.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
376
+ "model.layers.21.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
377
+ "model.layers.21.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
378
+ "model.layers.21.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
379
+ "model.layers.21.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
380
+ "model.layers.21.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
381
+ "model.layers.21.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
382
+ "model.layers.21.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
383
+ "model.layers.21.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
384
+ "model.layers.21.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
385
+ "model.layers.21.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
386
+ "model.layers.21.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
387
+ "model.layers.21.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
388
+ "model.layers.21.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
389
+ "model.layers.21.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
390
+ "model.layers.21.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
391
+ "model.layers.21.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
392
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
393
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
394
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
395
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
396
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
397
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
398
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
399
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
400
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
401
+ "model.layers.22.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
402
+ "model.layers.22.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
403
+ "model.layers.22.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
404
+ "model.layers.22.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
405
+ "model.layers.22.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
406
+ "model.layers.22.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
407
+ "model.layers.22.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
408
+ "model.layers.22.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
409
+ "model.layers.22.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
410
+ "model.layers.22.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
411
+ "model.layers.22.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
412
+ "model.layers.22.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
413
+ "model.layers.22.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
414
+ "model.layers.22.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
415
+ "model.layers.22.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
416
+ "model.layers.22.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
417
+ "model.layers.22.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
418
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
419
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
420
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
421
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
422
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
423
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
424
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
425
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
426
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
427
+ "model.layers.23.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
428
+ "model.layers.23.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
429
+ "model.layers.23.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
430
+ "model.layers.23.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
431
+ "model.layers.23.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
432
+ "model.layers.23.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
433
+ "model.layers.23.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
434
+ "model.layers.23.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
435
+ "model.layers.23.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
436
+ "model.layers.23.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
437
+ "model.layers.23.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
438
+ "model.layers.23.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
439
+ "model.layers.23.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
440
+ "model.layers.23.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
441
+ "model.layers.23.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
442
+ "model.layers.23.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
443
+ "model.layers.23.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
444
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
445
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
446
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
447
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
448
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
449
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
450
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
451
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
452
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
453
+ "model.layers.24.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
454
+ "model.layers.24.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
455
+ "model.layers.24.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
456
+ "model.layers.24.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
457
+ "model.layers.24.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
458
+ "model.layers.24.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
459
+ "model.layers.24.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
460
+ "model.layers.24.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
461
+ "model.layers.24.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
462
+ "model.layers.24.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
463
+ "model.layers.24.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
464
+ "model.layers.24.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
465
+ "model.layers.24.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
466
+ "model.layers.24.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
467
+ "model.layers.24.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
468
+ "model.layers.24.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
469
+ "model.layers.24.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
470
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
471
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
472
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
473
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
474
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
475
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
476
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
477
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
478
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
479
+ "model.layers.25.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
480
+ "model.layers.25.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
481
+ "model.layers.25.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
482
+ "model.layers.25.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
483
+ "model.layers.25.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
484
+ "model.layers.25.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
485
+ "model.layers.25.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
486
+ "model.layers.25.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
487
+ "model.layers.25.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
488
+ "model.layers.25.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
489
+ "model.layers.25.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
490
+ "model.layers.25.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
491
+ "model.layers.25.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
492
+ "model.layers.25.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
493
+ "model.layers.25.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
494
+ "model.layers.25.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
495
+ "model.layers.25.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
496
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
497
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
498
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
499
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
500
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
501
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
502
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
503
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
504
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
505
+ "model.layers.26.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
506
+ "model.layers.26.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
507
+ "model.layers.26.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
508
+ "model.layers.26.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
509
+ "model.layers.26.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
510
+ "model.layers.26.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
511
+ "model.layers.26.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
512
+ "model.layers.26.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
513
+ "model.layers.26.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
514
+ "model.layers.26.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
515
+ "model.layers.26.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
516
+ "model.layers.26.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
517
+ "model.layers.26.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
518
+ "model.layers.26.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
519
+ "model.layers.26.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
520
+ "model.layers.26.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
521
+ "model.layers.26.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
522
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
523
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
524
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
525
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
526
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
527
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
528
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
529
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
530
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
531
+ "model.layers.27.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
532
+ "model.layers.27.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
533
+ "model.layers.27.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
534
+ "model.layers.27.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
535
+ "model.layers.27.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
536
+ "model.layers.27.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
537
+ "model.layers.27.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
538
+ "model.layers.27.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
539
+ "model.layers.27.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
540
+ "model.layers.27.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
541
+ "model.layers.27.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
542
+ "model.layers.27.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
543
+ "model.layers.27.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
544
+ "model.layers.27.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
545
+ "model.layers.27.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
546
+ "model.layers.27.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
547
+ "model.layers.27.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
548
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
549
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
550
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
551
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
552
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
553
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
554
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
555
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
556
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
557
+ "model.layers.28.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
558
+ "model.layers.28.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
559
+ "model.layers.28.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
560
+ "model.layers.28.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
561
+ "model.layers.28.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
562
+ "model.layers.28.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
563
+ "model.layers.28.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
564
+ "model.layers.28.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
565
+ "model.layers.28.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
566
+ "model.layers.28.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
567
+ "model.layers.28.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
568
+ "model.layers.28.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
569
+ "model.layers.28.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
570
+ "model.layers.28.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
571
+ "model.layers.28.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
572
+ "model.layers.28.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
573
+ "model.layers.28.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
574
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
575
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
576
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
577
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
578
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
579
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
580
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
581
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
582
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
583
+ "model.layers.29.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
584
+ "model.layers.29.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
585
+ "model.layers.29.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
586
+ "model.layers.29.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
587
+ "model.layers.29.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
588
+ "model.layers.29.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
589
+ "model.layers.29.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
590
+ "model.layers.29.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
591
+ "model.layers.29.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
592
+ "model.layers.29.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
593
+ "model.layers.29.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
594
+ "model.layers.29.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
595
+ "model.layers.29.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
596
+ "model.layers.29.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
597
+ "model.layers.29.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
598
+ "model.layers.29.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
599
+ "model.layers.29.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
600
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
601
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
602
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
603
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
604
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
605
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
606
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
607
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
608
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
609
+ "model.layers.3.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
610
+ "model.layers.3.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
611
+ "model.layers.3.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
612
+ "model.layers.3.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
613
+ "model.layers.3.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
614
+ "model.layers.3.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
615
+ "model.layers.3.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
616
+ "model.layers.3.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
617
+ "model.layers.3.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
618
+ "model.layers.3.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
619
+ "model.layers.3.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
620
+ "model.layers.3.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
621
+ "model.layers.3.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
622
+ "model.layers.3.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
623
+ "model.layers.3.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
624
+ "model.layers.3.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
625
+ "model.layers.3.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
626
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
627
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
628
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
629
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
630
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
631
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
632
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
633
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
634
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
635
+ "model.layers.30.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00003-of-00004.safetensors",
636
+ "model.layers.30.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00003-of-00004.safetensors",
637
+ "model.layers.30.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00003-of-00004.safetensors",
638
+ "model.layers.30.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00003-of-00004.safetensors",
639
+ "model.layers.30.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00003-of-00004.safetensors",
640
+ "model.layers.30.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00003-of-00004.safetensors",
641
+ "model.layers.30.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00003-of-00004.safetensors",
642
+ "model.layers.30.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00003-of-00004.safetensors",
643
+ "model.layers.30.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00003-of-00004.safetensors",
644
+ "model.layers.30.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00003-of-00004.safetensors",
645
+ "model.layers.30.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00003-of-00004.safetensors",
646
+ "model.layers.30.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00003-of-00004.safetensors",
647
+ "model.layers.30.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00003-of-00004.safetensors",
648
+ "model.layers.30.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00003-of-00004.safetensors",
649
+ "model.layers.30.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00003-of-00004.safetensors",
650
+ "model.layers.30.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00003-of-00004.safetensors",
651
+ "model.layers.30.mlp.moe_adapter.router.weight": "model-00003-of-00004.safetensors",
652
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
653
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
654
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
655
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
656
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
657
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
658
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
659
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
660
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
661
+ "model.layers.31.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00004-of-00004.safetensors",
662
+ "model.layers.31.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00004-of-00004.safetensors",
663
+ "model.layers.31.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00004-of-00004.safetensors",
664
+ "model.layers.31.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00004-of-00004.safetensors",
665
+ "model.layers.31.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00004-of-00004.safetensors",
666
+ "model.layers.31.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00004-of-00004.safetensors",
667
+ "model.layers.31.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00004-of-00004.safetensors",
668
+ "model.layers.31.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00004-of-00004.safetensors",
669
+ "model.layers.31.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00004-of-00004.safetensors",
670
+ "model.layers.31.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00004-of-00004.safetensors",
671
+ "model.layers.31.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00004-of-00004.safetensors",
672
+ "model.layers.31.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00004-of-00004.safetensors",
673
+ "model.layers.31.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00004-of-00004.safetensors",
674
+ "model.layers.31.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00004-of-00004.safetensors",
675
+ "model.layers.31.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00004-of-00004.safetensors",
676
+ "model.layers.31.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00004-of-00004.safetensors",
677
+ "model.layers.31.mlp.moe_adapter.router.weight": "model-00004-of-00004.safetensors",
678
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
679
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
680
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
681
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
682
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
683
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
684
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
685
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
686
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
687
+ "model.layers.4.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
688
+ "model.layers.4.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
689
+ "model.layers.4.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
690
+ "model.layers.4.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
691
+ "model.layers.4.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
692
+ "model.layers.4.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
693
+ "model.layers.4.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
694
+ "model.layers.4.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
695
+ "model.layers.4.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
696
+ "model.layers.4.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
697
+ "model.layers.4.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
698
+ "model.layers.4.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
699
+ "model.layers.4.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
700
+ "model.layers.4.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
701
+ "model.layers.4.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
702
+ "model.layers.4.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
703
+ "model.layers.4.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
704
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
705
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
706
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
707
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
708
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
709
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
710
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
711
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
712
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
713
+ "model.layers.5.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
714
+ "model.layers.5.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
715
+ "model.layers.5.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
716
+ "model.layers.5.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
717
+ "model.layers.5.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
718
+ "model.layers.5.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
719
+ "model.layers.5.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
720
+ "model.layers.5.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
721
+ "model.layers.5.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
722
+ "model.layers.5.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
723
+ "model.layers.5.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
724
+ "model.layers.5.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
725
+ "model.layers.5.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
726
+ "model.layers.5.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
727
+ "model.layers.5.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
728
+ "model.layers.5.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
729
+ "model.layers.5.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
730
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
731
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
732
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
733
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
734
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
735
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
736
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
737
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
738
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
739
+ "model.layers.6.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
740
+ "model.layers.6.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
741
+ "model.layers.6.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
742
+ "model.layers.6.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
743
+ "model.layers.6.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
744
+ "model.layers.6.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
745
+ "model.layers.6.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
746
+ "model.layers.6.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
747
+ "model.layers.6.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
748
+ "model.layers.6.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
749
+ "model.layers.6.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
750
+ "model.layers.6.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
751
+ "model.layers.6.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
752
+ "model.layers.6.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
753
+ "model.layers.6.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
754
+ "model.layers.6.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
755
+ "model.layers.6.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
756
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
757
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
758
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
759
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
760
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
761
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
762
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
763
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
764
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
765
+ "model.layers.7.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
766
+ "model.layers.7.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
767
+ "model.layers.7.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
768
+ "model.layers.7.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
769
+ "model.layers.7.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
770
+ "model.layers.7.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
771
+ "model.layers.7.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
772
+ "model.layers.7.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
773
+ "model.layers.7.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
774
+ "model.layers.7.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
775
+ "model.layers.7.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
776
+ "model.layers.7.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
777
+ "model.layers.7.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
778
+ "model.layers.7.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
779
+ "model.layers.7.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
780
+ "model.layers.7.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
781
+ "model.layers.7.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
782
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
783
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
784
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
785
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
786
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
787
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
788
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
789
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
790
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
791
+ "model.layers.8.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
792
+ "model.layers.8.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
793
+ "model.layers.8.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
794
+ "model.layers.8.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
795
+ "model.layers.8.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
796
+ "model.layers.8.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
797
+ "model.layers.8.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
798
+ "model.layers.8.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
799
+ "model.layers.8.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
800
+ "model.layers.8.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
801
+ "model.layers.8.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
802
+ "model.layers.8.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
803
+ "model.layers.8.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
804
+ "model.layers.8.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
805
+ "model.layers.8.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
806
+ "model.layers.8.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
807
+ "model.layers.8.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
808
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
809
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
810
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
811
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
812
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
813
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
814
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
815
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
816
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
817
+ "model.layers.9.mlp.moe_adapter.experts.expert_0.adapter_down.weight": "model-00001-of-00004.safetensors",
818
+ "model.layers.9.mlp.moe_adapter.experts.expert_0.adapter_up.weight": "model-00001-of-00004.safetensors",
819
+ "model.layers.9.mlp.moe_adapter.experts.expert_1.adapter_down.weight": "model-00001-of-00004.safetensors",
820
+ "model.layers.9.mlp.moe_adapter.experts.expert_1.adapter_up.weight": "model-00001-of-00004.safetensors",
821
+ "model.layers.9.mlp.moe_adapter.experts.expert_2.adapter_down.weight": "model-00001-of-00004.safetensors",
822
+ "model.layers.9.mlp.moe_adapter.experts.expert_2.adapter_up.weight": "model-00001-of-00004.safetensors",
823
+ "model.layers.9.mlp.moe_adapter.experts.expert_3.adapter_down.weight": "model-00001-of-00004.safetensors",
824
+ "model.layers.9.mlp.moe_adapter.experts.expert_3.adapter_up.weight": "model-00001-of-00004.safetensors",
825
+ "model.layers.9.mlp.moe_adapter.experts.expert_4.adapter_down.weight": "model-00001-of-00004.safetensors",
826
+ "model.layers.9.mlp.moe_adapter.experts.expert_4.adapter_up.weight": "model-00001-of-00004.safetensors",
827
+ "model.layers.9.mlp.moe_adapter.experts.expert_5.adapter_down.weight": "model-00001-of-00004.safetensors",
828
+ "model.layers.9.mlp.moe_adapter.experts.expert_5.adapter_up.weight": "model-00001-of-00004.safetensors",
829
+ "model.layers.9.mlp.moe_adapter.experts.expert_6.adapter_down.weight": "model-00001-of-00004.safetensors",
830
+ "model.layers.9.mlp.moe_adapter.experts.expert_6.adapter_up.weight": "model-00001-of-00004.safetensors",
831
+ "model.layers.9.mlp.moe_adapter.experts.expert_7.adapter_down.weight": "model-00001-of-00004.safetensors",
832
+ "model.layers.9.mlp.moe_adapter.experts.expert_7.adapter_up.weight": "model-00001-of-00004.safetensors",
833
+ "model.layers.9.mlp.moe_adapter.router.weight": "model-00001-of-00004.safetensors",
834
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
835
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
836
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
837
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
838
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
839
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
840
+ "model.norm.weight": "model-00004-of-00004.safetensors"
841
+ }
842
+ }
modeling_openrag.py ADDED
@@ -0,0 +1,1265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import numpy as np
25
+ import copy
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from torch import nn
31
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
32
+ from torch.distributions.normal import Normal
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ MoECausalLMOutputWithPast,
39
+ )
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.utils import (
42
+ ModelOutput,
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from dataclasses import dataclass
49
+
50
+ from .configuration_openrag import OpenRAGConfig
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ _CONFIG_FOR_DOC = "OpenRAGConfig"
55
+
56
+
57
+ @dataclass
58
+ class MoEModelOutputWithPast(ModelOutput):
59
+ last_hidden_state: torch.FloatTensor = None
60
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
61
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
62
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
63
+ router_logits: Optional[Tuple[torch.FloatTensor]] = None
64
+
65
+
66
+ @dataclass
67
+ class MoECausalLMOutputWithPast(ModelOutput):
68
+ loss: Optional[torch.FloatTensor] = None
69
+ aux_loss: Optional[torch.FloatTensor] = None
70
+ logits: torch.FloatTensor = None
71
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
72
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
73
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
74
+ router_logits: Optional[Tuple[torch.FloatTensor]] = None
75
+
76
+
77
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
78
+ def _make_causal_mask(
79
+ input_ids_shape: torch.Size,
80
+ dtype: torch.dtype,
81
+ device: torch.device,
82
+ past_key_values_length: int = 0,
83
+ ):
84
+ """
85
+ Make causal mask used for bi-directional self-attention.
86
+ """
87
+ bsz, tgt_len = input_ids_shape
88
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
89
+ mask_cond = torch.arange(mask.size(-1), device=device)
90
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
91
+ mask = mask.to(dtype)
92
+
93
+ if past_key_values_length > 0:
94
+ mask = torch.cat(
95
+ [
96
+ torch.zeros(
97
+ tgt_len, past_key_values_length, dtype=dtype, device=device
98
+ ),
99
+ mask,
100
+ ],
101
+ dim=-1,
102
+ )
103
+ return mask[None, None, :, :].expand(
104
+ bsz, 1, tgt_len, tgt_len + past_key_values_length
105
+ )
106
+
107
+
108
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
109
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
110
+ """
111
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
112
+ """
113
+ bsz, src_len = mask.size()
114
+ tgt_len = tgt_len if tgt_len is not None else src_len
115
+
116
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
117
+
118
+ inverted_mask = 1.0 - expanded_mask
119
+
120
+ return inverted_mask.masked_fill(
121
+ inverted_mask.to(torch.bool), torch.finfo(dtype).min
122
+ )
123
+
124
+
125
+ class LlamaRMSNorm(nn.Module):
126
+ def __init__(self, hidden_size, eps=1e-6):
127
+ """
128
+ LlamaRMSNorm is equivalent to T5LayerNorm
129
+ """
130
+ super().__init__()
131
+ self.weight = nn.Parameter(torch.ones(hidden_size))
132
+ self.variance_epsilon = eps
133
+
134
+ def forward(self, hidden_states):
135
+ input_dtype = hidden_states.dtype
136
+ hidden_states = hidden_states.to(torch.float32)
137
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
138
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
139
+ return self.weight * hidden_states.to(input_dtype)
140
+
141
+
142
+ class LlamaRotaryEmbedding(torch.nn.Module):
143
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
144
+ super().__init__()
145
+
146
+ self.dim = dim
147
+ self.max_position_embeddings = max_position_embeddings
148
+ self.base = base
149
+ inv_freq = 1.0 / (
150
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
151
+ )
152
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
153
+
154
+ # Build here to make `torch.jit.trace` work.
155
+ self._set_cos_sin_cache(
156
+ seq_len=max_position_embeddings,
157
+ device=self.inv_freq.device,
158
+ dtype=torch.get_default_dtype(),
159
+ )
160
+
161
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
162
+ self.max_seq_len_cached = seq_len
163
+ t = torch.arange(
164
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
165
+ )
166
+
167
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
168
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
169
+ emb = torch.cat((freqs, freqs), dim=-1)
170
+ self.register_buffer(
171
+ "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
172
+ )
173
+ self.register_buffer(
174
+ "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
175
+ )
176
+
177
+ def forward(self, x, seq_len=None):
178
+ # x: [bs, num_attention_heads, seq_len, head_size]
179
+ if seq_len > self.max_seq_len_cached:
180
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
181
+
182
+ return (
183
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
184
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
185
+ )
186
+
187
+
188
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
189
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
190
+
191
+ def __init__(
192
+ self,
193
+ dim,
194
+ max_position_embeddings=2048,
195
+ base=10000,
196
+ device=None,
197
+ scaling_factor=1.0,
198
+ ):
199
+ self.scaling_factor = scaling_factor
200
+ super().__init__(dim, max_position_embeddings, base, device)
201
+
202
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
203
+ self.max_seq_len_cached = seq_len
204
+ t = torch.arange(
205
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
206
+ )
207
+ t = t / self.scaling_factor
208
+
209
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
210
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
211
+ emb = torch.cat((freqs, freqs), dim=-1)
212
+ self.register_buffer(
213
+ "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
214
+ )
215
+ self.register_buffer(
216
+ "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
217
+ )
218
+
219
+
220
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
221
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
222
+
223
+ def __init__(
224
+ self,
225
+ dim,
226
+ max_position_embeddings=2048,
227
+ base=10000,
228
+ device=None,
229
+ scaling_factor=1.0,
230
+ ):
231
+ self.scaling_factor = scaling_factor
232
+ super().__init__(dim, max_position_embeddings, base, device)
233
+
234
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
235
+ self.max_seq_len_cached = seq_len
236
+
237
+ if seq_len > self.max_position_embeddings:
238
+ base = self.base * (
239
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
240
+ - (self.scaling_factor - 1)
241
+ ) ** (self.dim / (self.dim - 2))
242
+ inv_freq = 1.0 / (
243
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
244
+ )
245
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
246
+
247
+ t = torch.arange(
248
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
249
+ )
250
+
251
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
252
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
253
+ emb = torch.cat((freqs, freqs), dim=-1)
254
+ self.register_buffer(
255
+ "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
256
+ )
257
+ self.register_buffer(
258
+ "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
259
+ )
260
+
261
+
262
+ def rotate_half(x):
263
+ """Rotates half the hidden dims of the input."""
264
+ x1 = x[..., : x.shape[-1] // 2]
265
+ x2 = x[..., x.shape[-1] // 2 :]
266
+ return torch.cat((-x2, x1), dim=-1)
267
+
268
+
269
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
270
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
271
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
272
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
273
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
274
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
275
+ q_embed = (q * cos) + (rotate_half(q) * sin)
276
+ k_embed = (k * cos) + (rotate_half(k) * sin)
277
+ return q_embed, k_embed
278
+
279
+
280
+ # Llama MoE
281
+ def load_balancing_loss_func(
282
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2
283
+ ) -> float:
284
+ r"""
285
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
286
+
287
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
288
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
289
+ experts is too unbalanced.
290
+
291
+ Args:
292
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
293
+ Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts].
294
+ num_experts (`int`, *optional*):
295
+ Number of experts
296
+
297
+ Returns:
298
+ The auxiliary loss.
299
+ """
300
+ if gate_logits is None:
301
+ return 0
302
+
303
+ if isinstance(gate_logits, tuple):
304
+ # cat along the layers?
305
+ compute_device = gate_logits[0].device
306
+ gate_logits = torch.cat(
307
+ [gate.to(compute_device) for gate in gate_logits], dim=0
308
+ )
309
+
310
+ routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1)
311
+ routing_weights = routing_weights.softmax(dim=-1)
312
+
313
+ # cast the expert indices to int64, otherwise one-hot encoding will fail
314
+ if selected_experts.dtype != torch.int64:
315
+ selected_experts = selected_experts.to(torch.int64)
316
+
317
+ if len(selected_experts.shape) == 2:
318
+ selected_experts = selected_experts.unsqueeze(2)
319
+
320
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
321
+
322
+ # For a given token, determine if it was routed to a given expert.
323
+ expert_mask = torch.max(expert_mask, axis=-2).values
324
+
325
+ # cast to float32 otherwise mean will fail
326
+ expert_mask = expert_mask.to(torch.float32)
327
+ tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
328
+
329
+ router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1)
330
+ return torch.mean(
331
+ tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)
332
+ ) * (num_experts**2)
333
+
334
+
335
+ class ParallelAdapterMLP(nn.Module):
336
+ def __init__(self, config, adapter_dim, adapter_scaling):
337
+ super().__init__()
338
+ self.config = config
339
+ self.intermediate_size = config.intermediate_size
340
+ self.hidden_size = config.hidden_size
341
+ self.adapter_down = nn.Linear(self.hidden_size, adapter_dim, bias=False)
342
+ self.adapter_up = nn.Linear(adapter_dim, self.hidden_size, bias=False)
343
+ self.adapter_act = nn.GELU()
344
+
345
+ self.adapter_dropout = nn.Dropout(p=0.1)
346
+ self.adapter_scaling = adapter_scaling
347
+
348
+ def forward(self, x):
349
+ x = self.adapter_dropout(x)
350
+ x = self.adapter_scaling * self.adapter_up(
351
+ self.adapter_act(self.adapter_down(x))
352
+ )
353
+ return x
354
+
355
+
356
+ class OpenRAGGateAdapter(nn.Module):
357
+ def __init__(self, config: OpenRAGConfig):
358
+ super().__init__()
359
+
360
+ self.intermediate_size = config.intermediate_size
361
+ self.hidden_size = config.hidden_size
362
+
363
+ # Step 1: Router
364
+ self.num_experts = config.num_experts
365
+ self.topk = config.topk
366
+ self.router = nn.Linear(config.hidden_size, self.num_experts, bias=False)
367
+ self.dtype = getattr(torch, config.moe_dtype)
368
+
369
+ # Step 2: Get the experts
370
+ self.experts = nn.ModuleDict()
371
+ for idx in range(config.num_experts):
372
+ self.experts[f"expert_{idx}"] = ParallelAdapterMLP(
373
+ config, config.adapter_dim, config.moe_scaling
374
+ )
375
+
376
+ def forward(self, input_hidden_states, output_hidden_states, router_hidden_states):
377
+ orig_shape = output_hidden_states.shape
378
+ input_hidden_states = input_hidden_states.view(
379
+ -1, input_hidden_states.shape[-1]
380
+ )
381
+ output_hidden_states = output_hidden_states.view(
382
+ -1, output_hidden_states.shape[-1]
383
+ )
384
+ router_hidden_states = router_hidden_states.view(
385
+ -1, router_hidden_states.shape[-1]
386
+ )
387
+
388
+ router_logits = self.router(router_hidden_states)
389
+
390
+ expert_weights, expert_indices = torch.topk(router_logits, self.topk, dim=-1)
391
+ expert_weights = expert_weights.softmax(dim=-1)
392
+ flat_expert_indices = expert_indices.view(-1)
393
+
394
+ input_hidden_states = input_hidden_states.repeat_interleave(self.topk, dim=0)
395
+ expert_hidden_states = output_hidden_states.repeat_interleave(self.topk, dim=0)
396
+ for idx, expert in enumerate(self.experts.values()):
397
+ expert_hidden_states[flat_expert_indices == idx] += expert(
398
+ input_hidden_states[flat_expert_indices == idx]
399
+ )
400
+ hidden_states = (
401
+ expert_hidden_states.view(*expert_weights.shape, -1)
402
+ * expert_weights.unsqueeze(-1)
403
+ ).sum(dim=1)
404
+
405
+ return hidden_states.view(*orig_shape), router_logits
406
+
407
+
408
+ class LlamaMLP(nn.Module):
409
+ def __init__(self, config):
410
+ super().__init__()
411
+ self.config = config
412
+ self.hidden_size = config.hidden_size
413
+ self.intermediate_size = config.intermediate_size
414
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
415
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
416
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
417
+ self.act_fn = ACT2FN[config.hidden_act]
418
+
419
+ self.moe_adapter = OpenRAGGateAdapter(config)
420
+
421
+ def forward(self, x):
422
+ router_hidden_states = x
423
+ up_proj = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
424
+ down_proj = self.down_proj(up_proj)
425
+ down_proj, router_logits = self.moe_adapter(
426
+ down_proj, down_proj, router_hidden_states
427
+ )
428
+
429
+ return down_proj, router_logits
430
+
431
+
432
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
433
+ """
434
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
435
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
436
+ """
437
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
438
+ if n_rep == 1:
439
+ return hidden_states
440
+ hidden_states = hidden_states[:, :, None, :, :].expand(
441
+ batch, num_key_value_heads, n_rep, slen, head_dim
442
+ )
443
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
444
+
445
+
446
+ class LlamaAttention(nn.Module):
447
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
448
+
449
+ def __init__(self, config: OpenRAGConfig):
450
+ super().__init__()
451
+ self.config = config
452
+ self.hidden_size = config.hidden_size
453
+ self.num_heads = config.num_attention_heads
454
+ self.head_dim = self.hidden_size // self.num_heads
455
+ self.num_key_value_heads = config.num_key_value_heads
456
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
457
+ self.max_position_embeddings = config.max_position_embeddings
458
+
459
+ if (self.head_dim * self.num_heads) != self.hidden_size:
460
+ raise ValueError(
461
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
462
+ f" and `num_heads`: {self.num_heads})."
463
+ )
464
+ self.q_proj = nn.Linear(
465
+ self.hidden_size, self.num_heads * self.head_dim, bias=False
466
+ )
467
+ self.k_proj = nn.Linear(
468
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
469
+ )
470
+ self.v_proj = nn.Linear(
471
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
472
+ )
473
+ self.o_proj = nn.Linear(
474
+ self.num_heads * self.head_dim, self.hidden_size, bias=False
475
+ )
476
+ self._init_rope()
477
+
478
+ def _init_rope(self):
479
+ if self.config.rope_scaling is None:
480
+ self.rotary_emb = LlamaRotaryEmbedding(
481
+ self.head_dim, max_position_embeddings=self.max_position_embeddings
482
+ )
483
+ else:
484
+ scaling_type = self.config.rope_scaling["type"]
485
+ scaling_factor = self.config.rope_scaling["factor"]
486
+ if scaling_type == "linear":
487
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
488
+ self.head_dim,
489
+ max_position_embeddings=self.max_position_embeddings,
490
+ scaling_factor=scaling_factor,
491
+ )
492
+ elif scaling_type == "dynamic":
493
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
494
+ self.head_dim,
495
+ max_position_embeddings=self.max_position_embeddings,
496
+ scaling_factor=scaling_factor,
497
+ )
498
+ else:
499
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
500
+
501
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
502
+ return (
503
+ tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
504
+ .transpose(1, 2)
505
+ .contiguous()
506
+ )
507
+
508
+ def forward(
509
+ self,
510
+ hidden_states: torch.Tensor,
511
+ attention_mask: Optional[torch.Tensor] = None,
512
+ position_ids: Optional[torch.LongTensor] = None,
513
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
514
+ output_attentions: bool = False,
515
+ use_cache: bool = False,
516
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
517
+ bsz, q_len, _ = hidden_states.size()
518
+
519
+ if self.config.pretraining_tp > 1:
520
+ key_value_slicing = (
521
+ self.num_key_value_heads * self.head_dim
522
+ ) // self.config.pretraining_tp
523
+ query_slices = self.q_proj.weight.split(
524
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
525
+ )
526
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
527
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
528
+
529
+ query_states = [
530
+ F.linear(hidden_states, query_slices[i])
531
+ for i in range(self.config.pretraining_tp)
532
+ ]
533
+ query_states = torch.cat(query_states, dim=-1)
534
+
535
+ key_states = [
536
+ F.linear(hidden_states, key_slices[i])
537
+ for i in range(self.config.pretraining_tp)
538
+ ]
539
+ key_states = torch.cat(key_states, dim=-1)
540
+
541
+ value_states = [
542
+ F.linear(hidden_states, value_slices[i])
543
+ for i in range(self.config.pretraining_tp)
544
+ ]
545
+ value_states = torch.cat(value_states, dim=-1)
546
+
547
+ else:
548
+ query_states = self.q_proj(hidden_states)
549
+ key_states = self.k_proj(hidden_states)
550
+ value_states = self.v_proj(hidden_states)
551
+
552
+ query_states = query_states.view(
553
+ bsz, q_len, self.num_heads, self.head_dim
554
+ ).transpose(1, 2)
555
+ key_states = key_states.view(
556
+ bsz, q_len, self.num_key_value_heads, self.head_dim
557
+ ).transpose(1, 2)
558
+ value_states = value_states.view(
559
+ bsz, q_len, self.num_key_value_heads, self.head_dim
560
+ ).transpose(1, 2)
561
+
562
+ kv_seq_len = key_states.shape[-2]
563
+ if past_key_value is not None:
564
+ kv_seq_len += past_key_value[0].shape[-2]
565
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
566
+ query_states, key_states = apply_rotary_pos_emb(
567
+ query_states, key_states, cos, sin, position_ids
568
+ )
569
+
570
+ if past_key_value is not None:
571
+ # reuse k, v, self_attention
572
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
573
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
574
+
575
+ past_key_value = (key_states, value_states) if use_cache else None
576
+
577
+ # repeat k/v heads if n_kv_heads < n_heads
578
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
579
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
580
+
581
+ attn_weights = torch.matmul(
582
+ query_states, key_states.transpose(2, 3)
583
+ ) / math.sqrt(self.head_dim)
584
+
585
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
586
+ raise ValueError(
587
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
588
+ f" {attn_weights.size()}"
589
+ )
590
+
591
+ if attention_mask is not None:
592
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
593
+ raise ValueError(
594
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
595
+ )
596
+ attn_weights = attn_weights + attention_mask
597
+
598
+ # upcast attention to fp32
599
+ attn_weights = nn.functional.softmax(
600
+ attn_weights, dim=-1, dtype=torch.float32
601
+ ).to(query_states.dtype)
602
+ attn_output = torch.matmul(attn_weights, value_states)
603
+
604
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
605
+ raise ValueError(
606
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
607
+ f" {attn_output.size()}"
608
+ )
609
+
610
+ attn_output = attn_output.transpose(1, 2).contiguous()
611
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
612
+
613
+ if self.config.pretraining_tp > 1:
614
+ attn_output = attn_output.split(
615
+ self.hidden_size // self.config.pretraining_tp, dim=2
616
+ )
617
+ o_proj_slices = self.o_proj.weight.split(
618
+ self.hidden_size // self.config.pretraining_tp, dim=1
619
+ )
620
+ attn_output = sum(
621
+ [
622
+ F.linear(attn_output[i], o_proj_slices[i])
623
+ for i in range(self.config.pretraining_tp)
624
+ ]
625
+ )
626
+ else:
627
+ attn_output = self.o_proj(attn_output)
628
+
629
+ if not output_attentions:
630
+ attn_weights = None
631
+
632
+ return attn_output, attn_weights, past_key_value
633
+
634
+
635
+ class LlamaDecoderLayer(nn.Module):
636
+ def __init__(self, config: OpenRAGConfig):
637
+ super().__init__()
638
+ self.config = config
639
+ self.hidden_size = config.hidden_size
640
+ self.self_attn = LlamaAttention(config=config)
641
+ self.mlp = LlamaMLP(config)
642
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
643
+ self.post_attention_layernorm = LlamaRMSNorm(
644
+ config.hidden_size, eps=config.rms_norm_eps
645
+ )
646
+
647
+ def forward(
648
+ self,
649
+ hidden_states: torch.Tensor,
650
+ attention_mask: Optional[torch.Tensor] = None,
651
+ position_ids: Optional[torch.LongTensor] = None,
652
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
653
+ output_attentions: Optional[bool] = False,
654
+ output_router_logits: Optional[bool] = False,
655
+ use_cache: Optional[bool] = False,
656
+ ) -> Tuple[
657
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
658
+ ]:
659
+ """
660
+ Args:
661
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
662
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
663
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
664
+ output_attentions (`bool`, *optional*):
665
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
666
+ returned tensors for more detail.
667
+ use_cache (`bool`, *optional*):
668
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
669
+ (see `past_key_values`).
670
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
671
+ """
672
+
673
+ residual = hidden_states
674
+
675
+ hidden_states = self.input_layernorm(hidden_states)
676
+ # router_hidden_states = hidden_states
677
+
678
+ # Self Attention
679
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
680
+ hidden_states=hidden_states,
681
+ attention_mask=attention_mask,
682
+ position_ids=position_ids,
683
+ past_key_value=past_key_value,
684
+ output_attentions=output_attentions,
685
+ use_cache=use_cache,
686
+ )
687
+ hidden_states = residual + hidden_states
688
+
689
+ # Fully Connected
690
+ residual = hidden_states
691
+ hidden_states = self.post_attention_layernorm(hidden_states)
692
+ hidden_states, router_logits = self.mlp(hidden_states)
693
+ hidden_states = residual + hidden_states
694
+
695
+ outputs = (hidden_states,)
696
+
697
+ if output_attentions:
698
+ outputs += (self_attn_weights,)
699
+
700
+ if use_cache:
701
+ outputs += (present_key_value,)
702
+
703
+ if output_router_logits:
704
+ outputs += (router_logits,)
705
+
706
+ return outputs
707
+
708
+
709
+ LLAMA_START_DOCSTRING = r"""
710
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
711
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
712
+ etc.)
713
+
714
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
715
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
716
+ and behavior.
717
+
718
+ Parameters:
719
+ config ([`OpenRAGConfig`]):
720
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
721
+ load the weights associated with the model, only the configuration. Check out the
722
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
723
+ """
724
+
725
+
726
+ @add_start_docstrings(
727
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
728
+ LLAMA_START_DOCSTRING,
729
+ )
730
+ class LlamaPreTrainedModel(PreTrainedModel):
731
+ config_class = OpenRAGConfig
732
+ base_model_prefix = "model"
733
+ supports_gradient_checkpointing = True
734
+ _no_split_modules = ["LlamaDecoderLayer"]
735
+ _skip_keys_device_placement = "past_key_values"
736
+
737
+ def _init_weights(self, module):
738
+ std = self.config.initializer_range
739
+ if isinstance(module, nn.Linear):
740
+ module.weight.data.normal_(mean=0.0, std=std)
741
+ if module.bias is not None:
742
+ module.bias.data.zero_()
743
+ elif isinstance(module, nn.Embedding):
744
+ module.weight.data.normal_(mean=0.0, std=std)
745
+ if module.padding_idx is not None:
746
+ module.weight.data[module.padding_idx].zero_()
747
+
748
+ def _set_gradient_checkpointing(self, module, value=False):
749
+ if isinstance(module, LlamaModel):
750
+ module.gradient_checkpointing = value
751
+
752
+
753
+ LLAMA_INPUTS_DOCSTRING = r"""
754
+ Args:
755
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
756
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
757
+ it.
758
+
759
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
760
+ [`PreTrainedTokenizer.__call__`] for details.
761
+
762
+ [What are input IDs?](../glossary#input-ids)
763
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
764
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
765
+
766
+ - 1 for tokens that are **not masked**,
767
+ - 0 for tokens that are **masked**.
768
+
769
+ [What are attention masks?](../glossary#attention-mask)
770
+
771
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
772
+ [`PreTrainedTokenizer.__call__`] for details.
773
+
774
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
775
+ `past_key_values`).
776
+
777
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
778
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
779
+ information on the default strategy.
780
+
781
+ - 1 indicates the head is **not masked**,
782
+ - 0 indicates the head is **masked**.
783
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
784
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
785
+ config.n_positions - 1]`.
786
+
787
+ [What are position IDs?](../glossary#position-ids)
788
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
789
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
790
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
791
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
792
+
793
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
794
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
795
+
796
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
797
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
798
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
799
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
800
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
801
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
802
+ model's internal embedding lookup matrix.
803
+ use_cache (`bool`, *optional*):
804
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
805
+ `past_key_values`).
806
+ output_attentions (`bool`, *optional*):
807
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
808
+ tensors for more detail.
809
+ output_hidden_states (`bool`, *optional*):
810
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
811
+ more detail.
812
+ output_router_logits (`bool`, *optional*):
813
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
814
+ should not be returned during inference.
815
+ return_dict (`bool`, *optional*):
816
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
817
+ """
818
+
819
+
820
+ @add_start_docstrings(
821
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
822
+ LLAMA_START_DOCSTRING,
823
+ )
824
+ class LlamaModel(LlamaPreTrainedModel):
825
+ """
826
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
827
+
828
+ Args:
829
+ config: OpenRAGConfig
830
+ """
831
+
832
+ def __init__(self, config: OpenRAGConfig):
833
+ super().__init__(config)
834
+ self.padding_idx = config.pad_token_id
835
+ self.vocab_size = config.vocab_size
836
+
837
+ self.embed_tokens = nn.Embedding(
838
+ config.vocab_size, config.hidden_size, self.padding_idx
839
+ )
840
+ self.layers = nn.ModuleList(
841
+ [LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]
842
+ )
843
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
844
+
845
+ self.gradient_checkpointing = False
846
+ # Initialize weights and apply final processing
847
+ self.post_init()
848
+
849
+ def get_input_embeddings(self):
850
+ return self.embed_tokens
851
+
852
+ def set_input_embeddings(self, value):
853
+ self.embed_tokens = value
854
+
855
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
856
+ def _prepare_decoder_attention_mask(
857
+ self, attention_mask, input_shape, inputs_embeds, past_key_values_length
858
+ ):
859
+ # create causal mask
860
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
861
+ combined_attention_mask = None
862
+ if input_shape[-1] > 1:
863
+ combined_attention_mask = _make_causal_mask(
864
+ input_shape,
865
+ inputs_embeds.dtype,
866
+ device=inputs_embeds.device,
867
+ past_key_values_length=past_key_values_length,
868
+ )
869
+
870
+ if attention_mask is not None:
871
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
872
+ expanded_attn_mask = _expand_mask(
873
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
874
+ ).to(inputs_embeds.device)
875
+ combined_attention_mask = (
876
+ expanded_attn_mask
877
+ if combined_attention_mask is None
878
+ else expanded_attn_mask + combined_attention_mask
879
+ )
880
+
881
+ return combined_attention_mask
882
+
883
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
884
+ def forward(
885
+ self,
886
+ input_ids: torch.LongTensor = None,
887
+ attention_mask: Optional[torch.Tensor] = None,
888
+ position_ids: Optional[torch.LongTensor] = None,
889
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
890
+ inputs_embeds: Optional[torch.FloatTensor] = None,
891
+ use_cache: Optional[bool] = None,
892
+ output_attentions: Optional[bool] = None,
893
+ output_hidden_states: Optional[bool] = None,
894
+ output_router_logits: Optional[bool] = None,
895
+ return_dict: Optional[bool] = None,
896
+ ) -> Union[Tuple, MoEModelOutputWithPast]:
897
+ output_attentions = (
898
+ output_attentions
899
+ if output_attentions is not None
900
+ else self.config.output_attentions
901
+ )
902
+ output_hidden_states = (
903
+ output_hidden_states
904
+ if output_hidden_states is not None
905
+ else self.config.output_hidden_states
906
+ )
907
+ output_router_logits = (
908
+ output_router_logits
909
+ if output_router_logits is not None
910
+ else self.config.output_router_logits
911
+ )
912
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
913
+
914
+ return_dict = (
915
+ return_dict if return_dict is not None else self.config.use_return_dict
916
+ )
917
+
918
+ # retrieve input_ids and inputs_embeds
919
+ if input_ids is not None and inputs_embeds is not None:
920
+ raise ValueError(
921
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
922
+ )
923
+ elif input_ids is not None:
924
+ batch_size, seq_length = input_ids.shape
925
+ elif inputs_embeds is not None:
926
+ batch_size, seq_length, _ = inputs_embeds.shape
927
+ else:
928
+ raise ValueError(
929
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
930
+ )
931
+
932
+ seq_length_with_past = seq_length
933
+ past_key_values_length = 0
934
+
935
+ if past_key_values is not None:
936
+ past_key_values_length = past_key_values[0][0].shape[2]
937
+ seq_length_with_past = seq_length_with_past + past_key_values_length
938
+
939
+ if position_ids is None:
940
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
941
+ position_ids = torch.arange(
942
+ past_key_values_length,
943
+ seq_length + past_key_values_length,
944
+ dtype=torch.long,
945
+ device=device,
946
+ )
947
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
948
+ else:
949
+ position_ids = position_ids.view(-1, seq_length).long()
950
+
951
+ if inputs_embeds is None:
952
+ inputs_embeds = self.embed_tokens(input_ids)
953
+ # embed positions
954
+ if attention_mask is None:
955
+ attention_mask = torch.ones(
956
+ (batch_size, seq_length_with_past),
957
+ dtype=torch.bool,
958
+ device=inputs_embeds.device,
959
+ )
960
+ attention_mask = self._prepare_decoder_attention_mask(
961
+ attention_mask,
962
+ (batch_size, seq_length),
963
+ inputs_embeds,
964
+ past_key_values_length,
965
+ )
966
+
967
+ hidden_states = inputs_embeds
968
+
969
+ if self.gradient_checkpointing and self.training:
970
+ if use_cache:
971
+ logger.warning_once(
972
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
973
+ )
974
+ use_cache = False
975
+
976
+ # decoder layers
977
+ all_hidden_states = () if output_hidden_states else None
978
+ all_self_attns = () if output_attentions else None
979
+ all_router_logits = () if output_router_logits else None
980
+ next_decoder_cache = () if use_cache else None
981
+
982
+ for idx, decoder_layer in enumerate(self.layers):
983
+ if output_hidden_states:
984
+ all_hidden_states += (hidden_states,)
985
+
986
+ past_key_value = (
987
+ past_key_values[idx] if past_key_values is not None else None
988
+ )
989
+
990
+ if self.gradient_checkpointing and self.training:
991
+
992
+ def create_custom_forward(module):
993
+ def custom_forward(*inputs):
994
+ # None for past_key_value
995
+ return module(
996
+ *inputs, output_attentions, output_router_logits, None
997
+ )
998
+
999
+ return custom_forward
1000
+
1001
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1002
+ create_custom_forward(decoder_layer),
1003
+ hidden_states,
1004
+ attention_mask,
1005
+ position_ids,
1006
+ None,
1007
+ )
1008
+ else:
1009
+ layer_outputs = decoder_layer(
1010
+ hidden_states,
1011
+ attention_mask=attention_mask,
1012
+ position_ids=position_ids,
1013
+ past_key_value=past_key_value,
1014
+ output_attentions=output_attentions,
1015
+ output_router_logits=output_router_logits,
1016
+ use_cache=use_cache,
1017
+ )
1018
+
1019
+ hidden_states = layer_outputs[0]
1020
+
1021
+ if use_cache:
1022
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1023
+
1024
+ if output_attentions:
1025
+ all_self_attns += (layer_outputs[1],)
1026
+
1027
+ if output_router_logits:
1028
+ all_router_logits += (layer_outputs[-1],)
1029
+
1030
+ hidden_states = self.norm(hidden_states)
1031
+
1032
+ # add hidden states from the last decoder layer
1033
+ if output_hidden_states:
1034
+ all_hidden_states += (hidden_states,)
1035
+
1036
+ next_cache = next_decoder_cache if use_cache else None
1037
+ if not return_dict:
1038
+ return tuple(
1039
+ v
1040
+ for v in [
1041
+ hidden_states,
1042
+ next_cache,
1043
+ all_hidden_states,
1044
+ all_self_attns,
1045
+ all_router_logits,
1046
+ ]
1047
+ if v is not None
1048
+ )
1049
+ return MoEModelOutputWithPast(
1050
+ last_hidden_state=hidden_states,
1051
+ past_key_values=next_cache,
1052
+ hidden_states=all_hidden_states,
1053
+ attentions=all_self_attns,
1054
+ router_logits=all_router_logits,
1055
+ )
1056
+
1057
+
1058
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1059
+ _tied_weights_keys = ["lm_head.weight"]
1060
+
1061
+ def __init__(self, config):
1062
+ super().__init__(config)
1063
+ self.config = config
1064
+ self.model = LlamaModel(config)
1065
+ self.vocab_size = config.vocab_size
1066
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1067
+
1068
+ # Initialize weights and apply final processing
1069
+ self.post_init()
1070
+
1071
+ def get_input_embeddings(self):
1072
+ return self.model.embed_tokens
1073
+
1074
+ def set_input_embeddings(self, value):
1075
+ self.model.embed_tokens = value
1076
+
1077
+ def get_output_embeddings(self):
1078
+ return self.lm_head
1079
+
1080
+ def set_output_embeddings(self, new_embeddings):
1081
+ self.lm_head = new_embeddings
1082
+
1083
+ def set_decoder(self, decoder):
1084
+ self.model = decoder
1085
+
1086
+ def get_decoder(self):
1087
+ return self.model
1088
+
1089
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1090
+ @replace_return_docstrings(
1091
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1092
+ )
1093
+ def forward(
1094
+ self,
1095
+ input_ids: torch.LongTensor = None,
1096
+ attention_mask: Optional[torch.Tensor] = None,
1097
+ position_ids: Optional[torch.LongTensor] = None,
1098
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1099
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1100
+ labels: Optional[torch.LongTensor] = None,
1101
+ use_cache: Optional[bool] = None,
1102
+ output_attentions: Optional[bool] = None,
1103
+ output_hidden_states: Optional[bool] = None,
1104
+ output_router_logits: Optional[bool] = None,
1105
+ return_dict: Optional[bool] = None,
1106
+ ) -> Union[Tuple, MoECausalLMOutputWithPast]:
1107
+ r"""
1108
+ Args:
1109
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1110
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1111
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1112
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1113
+
1114
+ Returns:
1115
+
1116
+ Example:
1117
+
1118
+ ```python
1119
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1120
+
1121
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1122
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1123
+
1124
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1125
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1126
+
1127
+ >>> # Generate
1128
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1129
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1130
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1131
+ ```"""
1132
+
1133
+ output_attentions = (
1134
+ output_attentions
1135
+ if output_attentions is not None
1136
+ else self.config.output_attentions
1137
+ )
1138
+ output_hidden_states = (
1139
+ output_hidden_states
1140
+ if output_hidden_states is not None
1141
+ else self.config.output_hidden_states
1142
+ )
1143
+ output_router_logits = (
1144
+ output_router_logits
1145
+ if output_router_logits is not None
1146
+ else self.config.output_router_logits
1147
+ )
1148
+ return_dict = (
1149
+ return_dict if return_dict is not None else self.config.use_return_dict
1150
+ )
1151
+
1152
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1153
+ outputs = self.model(
1154
+ input_ids=input_ids,
1155
+ attention_mask=attention_mask,
1156
+ position_ids=position_ids,
1157
+ past_key_values=past_key_values,
1158
+ inputs_embeds=inputs_embeds,
1159
+ use_cache=use_cache,
1160
+ output_attentions=output_attentions,
1161
+ output_hidden_states=output_hidden_states,
1162
+ output_router_logits=output_router_logits,
1163
+ return_dict=return_dict,
1164
+ )
1165
+
1166
+ hidden_states = outputs[0]
1167
+ if self.config.pretraining_tp > 1:
1168
+ lm_head_slices = self.lm_head.weight.split(
1169
+ self.vocab_size // self.config.pretraining_tp, dim=0
1170
+ )
1171
+ logits = [
1172
+ F.linear(hidden_states, lm_head_slices[i])
1173
+ for i in range(self.config.pretraining_tp)
1174
+ ]
1175
+ logits = torch.cat(logits, dim=-1)
1176
+ else:
1177
+ logits = self.lm_head(hidden_states)
1178
+ logits = logits.float()
1179
+
1180
+ loss = None
1181
+
1182
+ if labels is not None:
1183
+ # Shift so that tokens < n predict n
1184
+ shift_logits = logits[..., :-1, :].contiguous()
1185
+ shift_labels = labels[..., 1:].contiguous()
1186
+ # Flatten the tokens
1187
+ loss_fct = CrossEntropyLoss()
1188
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1189
+ shift_labels = shift_labels.view(-1)
1190
+ # Enable model parallelism
1191
+ shift_labels = shift_labels.to(shift_logits.device)
1192
+ loss = loss_fct(shift_logits, shift_labels)
1193
+
1194
+ aux_loss = None
1195
+ if output_router_logits:
1196
+ aux_loss = load_balancing_loss_func(
1197
+ outputs.router_logits if return_dict else outputs[-1],
1198
+ self.config.num_experts,
1199
+ self.config.topk,
1200
+ )
1201
+ if labels is not None:
1202
+ loss += 0.01 * aux_loss
1203
+
1204
+ if not return_dict:
1205
+ output = (logits,) + outputs[1:]
1206
+ if output_router_logits:
1207
+ output = (aux_loss,) + output
1208
+ return (loss,) + output if loss is not None else output
1209
+
1210
+ return MoECausalLMOutputWithPast(
1211
+ loss=loss,
1212
+ aux_loss=aux_loss,
1213
+ logits=logits,
1214
+ past_key_values=outputs.past_key_values,
1215
+ hidden_states=outputs.hidden_states,
1216
+ attentions=outputs.attentions,
1217
+ router_logits=outputs.router_logits,
1218
+ )
1219
+
1220
+ def prepare_inputs_for_generation(
1221
+ self,
1222
+ input_ids,
1223
+ past_key_values=None,
1224
+ attention_mask=None,
1225
+ inputs_embeds=None,
1226
+ **kwargs,
1227
+ ):
1228
+ if past_key_values:
1229
+ input_ids = input_ids[:, -1:]
1230
+
1231
+ position_ids = kwargs.get("position_ids", None)
1232
+ if attention_mask is not None and position_ids is None:
1233
+ # create position_ids on the fly for batch generation
1234
+ position_ids = attention_mask.long().cumsum(-1) - 1
1235
+ position_ids.masked_fill_(attention_mask == 0, 1)
1236
+ if past_key_values:
1237
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1238
+
1239
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1240
+ if inputs_embeds is not None and past_key_values is None:
1241
+ model_inputs = {"inputs_embeds": inputs_embeds}
1242
+ else:
1243
+ model_inputs = {"input_ids": input_ids}
1244
+
1245
+ model_inputs.update(
1246
+ {
1247
+ "position_ids": position_ids,
1248
+ "past_key_values": past_key_values,
1249
+ "use_cache": kwargs.get("use_cache"),
1250
+ "attention_mask": attention_mask,
1251
+ }
1252
+ )
1253
+ return model_inputs
1254
+
1255
+ @staticmethod
1256
+ def _reorder_cache(past_key_values, beam_idx):
1257
+ reordered_past = ()
1258
+ for layer_past in past_key_values:
1259
+ reordered_past += (
1260
+ tuple(
1261
+ past_state.index_select(0, beam_idx.to(past_state.device))
1262
+ for past_state in layer_past
1263
+ ),
1264
+ )
1265
+ return reordered_past
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[Partially supported]",
4
+ "[Utility:1]",
5
+ "[Utility:2]",
6
+ "[No support / Contradictory]",
7
+ "[Retrieval]",
8
+ "<paragraph>",
9
+ "[Continue to Use Evidence]",
10
+ "[Relevant]",
11
+ "[Utility:3]",
12
+ "[Utility:5]",
13
+ "[No Retrieval]",
14
+ "[Irrelevant]",
15
+ "[Utility:4]",
16
+ "</paragraph>",
17
+ "[Fully supported]"
18
+ ],
19
+ "bos_token": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "eos_token": {
27
+ "content": "</s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "<pad>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "unk_token": {
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[Partially supported]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "[Utility:1]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32002": {
46
+ "content": "[Utility:2]",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32003": {
54
+ "content": "[No support / Contradictory]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32004": {
62
+ "content": "[Retrieval]",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "32005": {
70
+ "content": "<paragraph>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "32006": {
78
+ "content": "[Continue to Use Evidence]",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "32007": {
86
+ "content": "[Relevant]",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "32008": {
94
+ "content": "[Utility:3]",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "32009": {
102
+ "content": "[Utility:5]",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "32010": {
110
+ "content": "[No Retrieval]",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "32011": {
118
+ "content": "[Irrelevant]",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "32012": {
126
+ "content": "[Utility:4]",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "32013": {
134
+ "content": "</paragraph>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "32014": {
142
+ "content": "[Fully supported]",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "32015": {
150
+ "content": "<pad>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ }
157
+ },
158
+ "additional_special_tokens": [
159
+ "[Partially supported]",
160
+ "[Utility:1]",
161
+ "[Utility:2]",
162
+ "[No support / Contradictory]",
163
+ "[Retrieval]",
164
+ "<paragraph>",
165
+ "[Continue to Use Evidence]",
166
+ "[Relevant]",
167
+ "[Utility:3]",
168
+ "[Utility:5]",
169
+ "[No Retrieval]",
170
+ "[Irrelevant]",
171
+ "[Utility:4]",
172
+ "</paragraph>",
173
+ "[Fully supported]"
174
+ ],
175
+ "bos_token": "<s>",
176
+ "clean_up_tokenization_spaces": false,
177
+ "eos_token": "</s>",
178
+ "legacy": false,
179
+ "model_max_length": 4096,
180
+ "pad_token": "<pad>",
181
+ "padding_side": "right",
182
+ "sp_model_kwargs": {},
183
+ "spaces_between_special_tokens": false,
184
+ "tokenizer_class": "LlamaTokenizer",
185
+ "unk_token": "<unk>",
186
+ "use_default_system_prompt": false
187
+ }