PPO playing MountainCar-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
3cc5c1d
| from typing import Optional, Sequence, Type | |
| import gym | |
| import torch | |
| import torch.nn as nn | |
| from rl_algo_impls.shared.encoder.cnn import FlattenedCnnEncoder | |
| from rl_algo_impls.shared.module.utils import layer_init | |
| class ResidualBlock(nn.Module): | |
| def __init__( | |
| self, | |
| channels: int, | |
| activation: Type[nn.Module] = nn.ReLU, | |
| init_layers_orthogonal: bool = False, | |
| ) -> None: | |
| super().__init__() | |
| self.residual = nn.Sequential( | |
| activation(), | |
| layer_init( | |
| nn.Conv2d(channels, channels, 3, padding=1), init_layers_orthogonal | |
| ), | |
| activation(), | |
| layer_init( | |
| nn.Conv2d(channels, channels, 3, padding=1), init_layers_orthogonal | |
| ), | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return x + self.residual(x) | |
| class ConvSequence(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| activation: Type[nn.Module] = nn.ReLU, | |
| init_layers_orthogonal: bool = False, | |
| ) -> None: | |
| super().__init__() | |
| self.seq = nn.Sequential( | |
| layer_init( | |
| nn.Conv2d(in_channels, out_channels, 3, padding=1), | |
| init_layers_orthogonal, | |
| ), | |
| nn.MaxPool2d(3, stride=2, padding=1), | |
| ResidualBlock(out_channels, activation, init_layers_orthogonal), | |
| ResidualBlock(out_channels, activation, init_layers_orthogonal), | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return self.seq(x) | |
| class ImpalaCnn(FlattenedCnnEncoder): | |
| """ | |
| IMPALA-style CNN architecture | |
| """ | |
| def __init__( | |
| self, | |
| obs_space: gym.Space, | |
| activation: Type[nn.Module], | |
| cnn_init_layers_orthogonal: Optional[bool], | |
| linear_init_layers_orthogonal: bool, | |
| cnn_flatten_dim: int, | |
| impala_channels: Sequence[int] = (16, 32, 32), | |
| **kwargs, | |
| ) -> None: | |
| if cnn_init_layers_orthogonal is None: | |
| cnn_init_layers_orthogonal = False | |
| in_channels = obs_space.shape[0] # type: ignore | |
| sequences = [] | |
| for out_channels in impala_channels: | |
| sequences.append( | |
| ConvSequence( | |
| in_channels, out_channels, activation, cnn_init_layers_orthogonal | |
| ) | |
| ) | |
| in_channels = out_channels | |
| sequences.append(activation()) | |
| cnn = nn.Sequential(*sequences) | |
| super().__init__( | |
| obs_space, | |
| activation, | |
| linear_init_layers_orthogonal, | |
| cnn_flatten_dim, | |
| cnn, | |
| **kwargs, | |
| ) | |