PPO playing MountainCar-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
3cc5c1d
| from abc import ABC, abstractmethod | |
| from typing import Optional, Tuple, Type, Union | |
| import gym | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from rl_algo_impls.shared.module.utils import layer_init | |
| EncoderOutDim = Union[int, Tuple[int, ...]] | |
| class CnnEncoder(nn.Module, ABC): | |
| def __init__( | |
| self, | |
| obs_space: gym.Space, | |
| **kwargs, | |
| ) -> None: | |
| super().__init__() | |
| self.range_size = np.max(obs_space.high) - np.min(obs_space.low) # type: ignore | |
| def preprocess(self, obs: torch.Tensor) -> torch.Tensor: | |
| if len(obs.shape) == 3: | |
| obs = obs.unsqueeze(0) | |
| return obs.float() / self.range_size | |
| def forward(self, obs: torch.Tensor) -> torch.Tensor: | |
| return self.preprocess(obs) | |
| def out_dim(self) -> EncoderOutDim: | |
| ... | |
| class FlattenedCnnEncoder(CnnEncoder): | |
| def __init__( | |
| self, | |
| obs_space: gym.Space, | |
| activation: Type[nn.Module], | |
| linear_init_layers_orthogonal: bool, | |
| cnn_flatten_dim: int, | |
| cnn: nn.Module, | |
| **kwargs, | |
| ) -> None: | |
| super().__init__(obs_space, **kwargs) | |
| self.cnn = cnn | |
| self.flattened_dim = cnn_flatten_dim | |
| with torch.no_grad(): | |
| cnn_out = torch.flatten( | |
| cnn(self.preprocess(torch.as_tensor(obs_space.sample()))), start_dim=1 | |
| ) | |
| self.fc = nn.Sequential( | |
| nn.Flatten(), | |
| layer_init( | |
| nn.Linear(cnn_out.shape[1], cnn_flatten_dim), | |
| linear_init_layers_orthogonal, | |
| ), | |
| activation(), | |
| ) | |
| def forward(self, obs: torch.Tensor) -> torch.Tensor: | |
| x = super().forward(obs) | |
| x = self.cnn(x) | |
| x = self.fc(x) | |
| return x | |
| def out_dim(self) -> EncoderOutDim: | |
| return self.flattened_dim | |