--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: DeBERTaV3_model_V3 results: [] --- # DeBERTaV3_model_V3 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1653 - Accuracy: 0.9454 - F1: 0.7754 - Precision: 0.7975 - Recall: 0.7545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 90 | 0.3559 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 180 | 0.2851 | 0.9087 | 0.4602 | 0.8814 | 0.3114 | | No log | 3.0 | 270 | 0.2462 | 0.9049 | 0.4940 | 0.7381 | 0.3713 | | No log | 4.0 | 360 | 0.2183 | 0.9222 | 0.6232 | 0.7890 | 0.5150 | | No log | 5.0 | 450 | 0.1938 | 0.9304 | 0.6869 | 0.7846 | 0.6108 | | 0.2617 | 6.0 | 540 | 0.1804 | 0.9349 | 0.7129 | 0.7941 | 0.6467 | | 0.2617 | 7.0 | 630 | 0.1752 | 0.9364 | 0.7231 | 0.7929 | 0.6647 | | 0.2617 | 8.0 | 720 | 0.1719 | 0.9409 | 0.7539 | 0.7857 | 0.7246 | | 0.2617 | 9.0 | 810 | 0.1676 | 0.9424 | 0.7601 | 0.7922 | 0.7305 | | 0.2617 | 10.0 | 900 | 0.1653 | 0.9454 | 0.7754 | 0.7975 | 0.7545 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1