--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: DeBERTaV3_model_V3 results: [] --- # DeBERTaV3_model_V3 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0963 - Accuracy: 0.9724 - F1: 0.8874 - Precision: 0.9054 - Recall: 0.8701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 84 | 0.2797 | 0.9058 | 0.4630 | 0.8065 | 0.3247 | | No log | 2.0 | 168 | 0.2004 | 0.9269 | 0.6281 | 0.8636 | 0.4935 | | No log | 3.0 | 252 | 0.1818 | 0.9253 | 0.6761 | 0.7385 | 0.6234 | | No log | 4.0 | 336 | 0.1692 | 0.9399 | 0.7176 | 0.8704 | 0.6104 | | No log | 5.0 | 420 | 0.1503 | 0.9513 | 0.7945 | 0.8406 | 0.7532 | | 0.2044 | 6.0 | 504 | 0.1269 | 0.9562 | 0.8212 | 0.8378 | 0.8052 | | 0.2044 | 7.0 | 588 | 0.0963 | 0.9724 | 0.8874 | 0.9054 | 0.8701 | | 0.2044 | 8.0 | 672 | 0.1243 | 0.9594 | 0.8344 | 0.8514 | 0.8182 | | 0.2044 | 9.0 | 756 | 0.1107 | 0.9659 | 0.8609 | 0.8784 | 0.8442 | | 0.2044 | 10.0 | 840 | 0.1088 | 0.9675 | 0.8667 | 0.8904 | 0.8442 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1