Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +80 -0
- experiment_cfg/conf.yaml +0 -0
- experiment_cfg/metadata.json +934 -0
- global_step60000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step60000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step60000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step60000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step60000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step60000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step60000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step60000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step60000/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- model.safetensors +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +3 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
trainer_state.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/amlfs-01/home/seonghyeony/checkpoints/groot_s_gr1_idm_real_global_stats",
|
3 |
+
"action_dim": 32,
|
4 |
+
"action_head_cfg": {
|
5 |
+
"_convert_": "object",
|
6 |
+
"_target_": "gr00t.model.action_head.flow_matching_action_head_idm.FlowMatchingActionHeadIDM",
|
7 |
+
"config": {
|
8 |
+
"_recursive_": false,
|
9 |
+
"_target_": "gr00t.model.action_head.flow_matching_action_head_idm.FlowMatchingActionHeadIDMConfig",
|
10 |
+
"action_dim": 32,
|
11 |
+
"action_horizon": 16,
|
12 |
+
"add_pos_embed": true,
|
13 |
+
"add_seperator_token": true,
|
14 |
+
"add_view_embed": true,
|
15 |
+
"backbone_features_projector_cfg": null,
|
16 |
+
"diffusion_model_cfg": {
|
17 |
+
"_target_": "gr00t.model.action_head.cross_attention_dit.DiT",
|
18 |
+
"attention_head_dim": 64,
|
19 |
+
"dropout": 0.2,
|
20 |
+
"final_dropout": true,
|
21 |
+
"interleave_self_attention": true,
|
22 |
+
"norm_type": "ada_norm",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_layers": 8,
|
25 |
+
"output_dim": 1024,
|
26 |
+
"positional_embeddings": null
|
27 |
+
},
|
28 |
+
"hidden_size": 1024,
|
29 |
+
"max_action_dim": 32,
|
30 |
+
"max_num_views": 3,
|
31 |
+
"max_state_dim": 44,
|
32 |
+
"mm_projector_cfg": {
|
33 |
+
"_convert_": "object",
|
34 |
+
"_target_": "gr00t.model.action_head.multimodal_projector.MultimodalProjector",
|
35 |
+
"config": {
|
36 |
+
"_target_": "gr00t.model.action_head.multimodal_projector.MultimodalProjectorConfig",
|
37 |
+
"hidden_size": 1024,
|
38 |
+
"mm_hidden_size": 1024,
|
39 |
+
"mm_projector_type": "mlp_doubledownsample"
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"mm_vision_select_layer": -2,
|
43 |
+
"model_dtype": "float32",
|
44 |
+
"noise_beta_alpha": 1.5,
|
45 |
+
"noise_beta_beta": 1.0,
|
46 |
+
"noise_s": 0.999,
|
47 |
+
"num_inference_timesteps": 16,
|
48 |
+
"num_timestep_buckets": 1000,
|
49 |
+
"siglip_hidden_size": 1024,
|
50 |
+
"siglip_model_cfg": {
|
51 |
+
"_convert_": "object",
|
52 |
+
"_target_": "gr00t.model.action_head.siglip.SiglipModel.from_pretrained",
|
53 |
+
"pretrained_model_name_or_path": "google/siglip2-large-patch16-256"
|
54 |
+
},
|
55 |
+
"tune_vision_tower": true,
|
56 |
+
"vl_self_attention_cfg": {
|
57 |
+
"_target_": "gr00t.model.action_head.cross_attention_dit.SelfAttentionTransformer",
|
58 |
+
"attention_head_dim": 64,
|
59 |
+
"dropout": 0.2,
|
60 |
+
"final_dropout": true,
|
61 |
+
"num_attention_heads": 16,
|
62 |
+
"num_layers": 4,
|
63 |
+
"positional_embeddings": null
|
64 |
+
}
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"action_horizon": 16,
|
68 |
+
"architectures": [
|
69 |
+
"IDM"
|
70 |
+
],
|
71 |
+
"backbone_cfg": {
|
72 |
+
"_target_": "gr00t.model.backbone.IdentityBackbone"
|
73 |
+
},
|
74 |
+
"hidden_size": 0,
|
75 |
+
"model_dtype": "float32",
|
76 |
+
"model_type": "dual_brain",
|
77 |
+
"resume_path": "/mnt/amlfs-01/home/seonghyeony/checkpoints/groot_s_gr1_idm_real_global_stats",
|
78 |
+
"torch_dtype": "bfloat16",
|
79 |
+
"transformers_version": "4.48.0"
|
80 |
+
}
|
experiment_cfg/conf.yaml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
experiment_cfg/metadata.json
ADDED
@@ -0,0 +1,934 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"gr1_unified": {
|
3 |
+
"dataset_name": "gr1_unified:FullSet, gr1_unified:FullSet",
|
4 |
+
"dataset_statistics": {
|
5 |
+
"state": {
|
6 |
+
"left_arm": {
|
7 |
+
"max": [
|
8 |
+
1.3570959568023682,
|
9 |
+
1.5781080722808838,
|
10 |
+
1.7425614595413208,
|
11 |
+
0.04977008327841759,
|
12 |
+
2.521491289138794,
|
13 |
+
1.5104753971099854,
|
14 |
+
1.3451268672943115
|
15 |
+
],
|
16 |
+
"min": [
|
17 |
+
-1.7593636512756348,
|
18 |
+
-0.08899051696062088,
|
19 |
+
-1.6571800708770752,
|
20 |
+
-2.516343355178833,
|
21 |
+
-2.307133436203003,
|
22 |
+
-1.4132264852523804,
|
23 |
+
-1.4408576488494873
|
24 |
+
],
|
25 |
+
"mean": [
|
26 |
+
-0.1721954196691513,
|
27 |
+
0.18329788744449615,
|
28 |
+
-0.13603615760803223,
|
29 |
+
-1.0807313919067383,
|
30 |
+
0.14450088143348694,
|
31 |
+
0.1319544017314911,
|
32 |
+
-0.08306947350502014
|
33 |
+
],
|
34 |
+
"std": [
|
35 |
+
0.40682145953178406,
|
36 |
+
0.18259239196777344,
|
37 |
+
0.25132784247398376,
|
38 |
+
0.5786943435668945,
|
39 |
+
0.33050763607025146,
|
40 |
+
0.28609949350357056,
|
41 |
+
0.30134323239326477
|
42 |
+
],
|
43 |
+
"q01": [
|
44 |
+
-1.601158422231674,
|
45 |
+
-0.0004831812286283818,
|
46 |
+
-0.9488833963871002,
|
47 |
+
-2.43623423576355,
|
48 |
+
-0.940359205007553,
|
49 |
+
-0.648951044678688,
|
50 |
+
-0.9641011685132981
|
51 |
+
],
|
52 |
+
"q99": [
|
53 |
+
0.6305126994848265,
|
54 |
+
0.7966297268867493,
|
55 |
+
0.3873166218400003,
|
56 |
+
-0.07399308793246723,
|
57 |
+
1.0455405175685888,
|
58 |
+
0.8574009954929354,
|
59 |
+
0.48388660699129127
|
60 |
+
]
|
61 |
+
},
|
62 |
+
"left_hand": {
|
63 |
+
"max": [
|
64 |
+
2.8765757083892822,
|
65 |
+
2.6975045204162598,
|
66 |
+
3.3291828632354736,
|
67 |
+
2.7148845195770264,
|
68 |
+
3.664421558380127,
|
69 |
+
3.5466625690460205
|
70 |
+
],
|
71 |
+
"min": [
|
72 |
+
-3.262805700302124,
|
73 |
+
-2.7771592140197754,
|
74 |
+
-3.4712820053100586,
|
75 |
+
-2.7828404903411865,
|
76 |
+
-2.197380781173706,
|
77 |
+
-2.636387825012207
|
78 |
+
],
|
79 |
+
"mean": [
|
80 |
+
0.21940384805202484,
|
81 |
+
0.21819256246089935,
|
82 |
+
0.20426052808761597,
|
83 |
+
0.22833923995494843,
|
84 |
+
0.06841608136892319,
|
85 |
+
0.9091449975967407
|
86 |
+
],
|
87 |
+
"std": [
|
88 |
+
0.42784574627876276,
|
89 |
+
0.41304099559783936,
|
90 |
+
0.3710329830646515,
|
91 |
+
0.42297253012657166,
|
92 |
+
0.18603332340717316,
|
93 |
+
0.7297042012214661
|
94 |
+
],
|
95 |
+
"q01": [
|
96 |
+
-0.17130047902464868,
|
97 |
+
-0.002568027237430215,
|
98 |
+
-0.0029985445667989547,
|
99 |
+
-0.0024907408631406726,
|
100 |
+
-0.14894675761461257,
|
101 |
+
-0.0002731013679294847
|
102 |
+
],
|
103 |
+
"q99": [
|
104 |
+
1.5014824867248535,
|
105 |
+
1.5016536712646484,
|
106 |
+
1.404326802492144,
|
107 |
+
1.5127789616584781,
|
108 |
+
0.7817099303007136,
|
109 |
+
1.872669064998627
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"left_leg": {
|
113 |
+
"max": [
|
114 |
+
0.0,
|
115 |
+
0.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
5.186659473110922e-05,
|
119 |
+
0.0
|
120 |
+
],
|
121 |
+
"min": [
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
0.0,
|
126 |
+
-2.446335656713927e-06,
|
127 |
+
-1.6033794963732362e-05
|
128 |
+
],
|
129 |
+
"mean": [
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
7.68979953136295e-06,
|
135 |
+
-2.6351963242632337e-06
|
136 |
+
],
|
137 |
+
"std": [
|
138 |
+
0.0,
|
139 |
+
0.0,
|
140 |
+
0.0,
|
141 |
+
0.0,
|
142 |
+
1.7361962818540633e-05,
|
143 |
+
5.2996829253970645e-06
|
144 |
+
],
|
145 |
+
"q01": [
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
0.0,
|
149 |
+
0.0,
|
150 |
+
-2.446335656713927e-06,
|
151 |
+
-1.6033794963732362e-05
|
152 |
+
],
|
153 |
+
"q99": [
|
154 |
+
0.0,
|
155 |
+
0.0,
|
156 |
+
0.0,
|
157 |
+
0.0,
|
158 |
+
5.186659473110922e-05,
|
159 |
+
0.0
|
160 |
+
]
|
161 |
+
},
|
162 |
+
"neck": {
|
163 |
+
"max": [
|
164 |
+
0.01535311620682478,
|
165 |
+
0.05556071177124977,
|
166 |
+
0.008969387039542198
|
167 |
+
],
|
168 |
+
"min": [
|
169 |
+
-0.23586410284042358,
|
170 |
+
-0.03865945711731911,
|
171 |
+
-0.06754876673221588
|
172 |
+
],
|
173 |
+
"mean": [
|
174 |
+
-0.0008622645400464535,
|
175 |
+
5.3951262088958174e-05,
|
176 |
+
-0.00013521323853638023
|
177 |
+
],
|
178 |
+
"std": [
|
179 |
+
0.01196372415870428,
|
180 |
+
0.0034790514037013054,
|
181 |
+
0.0031053286511451006
|
182 |
+
],
|
183 |
+
"q01": [
|
184 |
+
-0.00492388429120183,
|
185 |
+
-0.0027977502904832363,
|
186 |
+
0.0
|
187 |
+
],
|
188 |
+
"q99": [
|
189 |
+
2.9924885893706232e-06,
|
190 |
+
0.0002969176275655627,
|
191 |
+
0.0
|
192 |
+
]
|
193 |
+
},
|
194 |
+
"right_arm": {
|
195 |
+
"max": [
|
196 |
+
1.7399436235427856,
|
197 |
+
0.07876992970705032,
|
198 |
+
2.5426626205444336,
|
199 |
+
0.048908114433288574,
|
200 |
+
3.000918388366699,
|
201 |
+
1.4513440132141113,
|
202 |
+
1.5000383853912354
|
203 |
+
],
|
204 |
+
"min": [
|
205 |
+
-2.2743337154388428,
|
206 |
+
-2.999122142791748,
|
207 |
+
-1.7424250841140747,
|
208 |
+
-2.536545753479004,
|
209 |
+
-2.6034910678863525,
|
210 |
+
-1.5032434463500977,
|
211 |
+
-1.4913568496704102
|
212 |
+
],
|
213 |
+
"mean": [
|
214 |
+
-0.1590277999639511,
|
215 |
+
-0.2511773109436035,
|
216 |
+
0.08599518239498138,
|
217 |
+
-1.1420482397079468,
|
218 |
+
0.21259814500808716,
|
219 |
+
0.04237671568989754,
|
220 |
+
0.03427042067050934
|
221 |
+
],
|
222 |
+
"std": [
|
223 |
+
0.563156247138977,
|
224 |
+
0.24450603127479553,
|
225 |
+
0.32825493812561035,
|
226 |
+
0.7310536503791809,
|
227 |
+
0.4813914895057678,
|
228 |
+
0.35611921548843384,
|
229 |
+
0.509053111076355
|
230 |
+
],
|
231 |
+
"q01": [
|
232 |
+
-1.423364037275314,
|
233 |
+
-1.0436977982521056,
|
234 |
+
-0.7169023394584656,
|
235 |
+
-2.4936094284057613,
|
236 |
+
-0.7377233326435089,
|
237 |
+
-0.803617289662361,
|
238 |
+
-0.9991738587617873
|
239 |
+
],
|
240 |
+
"q99": [
|
241 |
+
1.1677674055099487,
|
242 |
+
0.0006303858070168663,
|
243 |
+
0.8771779745817194,
|
244 |
+
-0.0582109544426202,
|
245 |
+
1.4707317113876357,
|
246 |
+
0.8474899172782919,
|
247 |
+
1.2271583080291748
|
248 |
+
]
|
249 |
+
},
|
250 |
+
"right_hand": {
|
251 |
+
"max": [
|
252 |
+
2.397510290145874,
|
253 |
+
2.4422738552093506,
|
254 |
+
3.0158462524414062,
|
255 |
+
2.457378625869751,
|
256 |
+
1.4605257511138916,
|
257 |
+
2.168534278869629
|
258 |
+
],
|
259 |
+
"min": [
|
260 |
+
-1.7595213651657104,
|
261 |
+
-1.8982670307159424,
|
262 |
+
-1.8622381687164307,
|
263 |
+
-1.8314869403839111,
|
264 |
+
-1.0045679807662964,
|
265 |
+
-0.31411829590797424
|
266 |
+
],
|
267 |
+
"mean": [
|
268 |
+
0.3499335348606109,
|
269 |
+
0.3412855267524719,
|
270 |
+
0.3271332383155823,
|
271 |
+
0.357576698064804,
|
272 |
+
0.09723818302154541,
|
273 |
+
1.0641368627548218
|
274 |
+
],
|
275 |
+
"std": [
|
276 |
+
0.49147421121597296,
|
277 |
+
0.4654525816440582,
|
278 |
+
0.4451630115509033,
|
279 |
+
0.48662698268890386,
|
280 |
+
0.1814946085214615,
|
281 |
+
0.5735033154487608
|
282 |
+
],
|
283 |
+
"q01": [
|
284 |
+
-0.004218762856908143,
|
285 |
+
-0.004575904295779765,
|
286 |
+
-0.005576773989014327,
|
287 |
+
-0.004707079078070819,
|
288 |
+
-0.18967307358980176,
|
289 |
+
0.03200087323784828
|
290 |
+
],
|
291 |
+
"q99": [
|
292 |
+
1.4994217157363892,
|
293 |
+
1.5029035806655884,
|
294 |
+
1.661455136537552,
|
295 |
+
1.5188306391239168,
|
296 |
+
0.6953653633594525,
|
297 |
+
1.8182492077350618
|
298 |
+
]
|
299 |
+
},
|
300 |
+
"right_leg": {
|
301 |
+
"max": [
|
302 |
+
0.0,
|
303 |
+
0.0,
|
304 |
+
0.0,
|
305 |
+
0.0,
|
306 |
+
5.369959126255708e-06,
|
307 |
+
0.0
|
308 |
+
],
|
309 |
+
"min": [
|
310 |
+
0.0,
|
311 |
+
0.0,
|
312 |
+
0.0,
|
313 |
+
0.0,
|
314 |
+
-2.446335656713927e-06,
|
315 |
+
-5.166131450096145e-05
|
316 |
+
],
|
317 |
+
"mean": [
|
318 |
+
0.0,
|
319 |
+
0.0,
|
320 |
+
0.0,
|
321 |
+
0.0,
|
322 |
+
8.152188684107387e-07,
|
323 |
+
-7.940252544358373e-06
|
324 |
+
],
|
325 |
+
"std": [
|
326 |
+
0.0,
|
327 |
+
0.0,
|
328 |
+
0.0,
|
329 |
+
0.0,
|
330 |
+
1.92081461136695e-06,
|
331 |
+
1.7361962818540633e-05
|
332 |
+
],
|
333 |
+
"q01": [
|
334 |
+
0.0,
|
335 |
+
0.0,
|
336 |
+
0.0,
|
337 |
+
0.0,
|
338 |
+
-2.446335656713927e-06,
|
339 |
+
-5.1661314500961446e-05
|
340 |
+
],
|
341 |
+
"q99": [
|
342 |
+
0.0,
|
343 |
+
0.0,
|
344 |
+
0.0,
|
345 |
+
0.0,
|
346 |
+
5.369959126255708e-06,
|
347 |
+
0.0
|
348 |
+
]
|
349 |
+
},
|
350 |
+
"waist": {
|
351 |
+
"max": [
|
352 |
+
1.0323854684829712,
|
353 |
+
0.7102982997894287,
|
354 |
+
0.43762317299842834
|
355 |
+
],
|
356 |
+
"min": [
|
357 |
+
-0.8131351470947266,
|
358 |
+
-0.4901888370513916,
|
359 |
+
-0.7304351925849915
|
360 |
+
],
|
361 |
+
"mean": [
|
362 |
+
0.014510802924633026,
|
363 |
+
0.014398206025362015,
|
364 |
+
-0.00020241182937752455
|
365 |
+
],
|
366 |
+
"std": [
|
367 |
+
0.12270263582468033,
|
368 |
+
0.032448362559080124,
|
369 |
+
0.00728295324370265
|
370 |
+
],
|
371 |
+
"q01": [
|
372 |
+
-0.33650725632905953,
|
373 |
+
-0.0290498711168766,
|
374 |
+
-0.026060330495238305
|
375 |
+
],
|
376 |
+
"q99": [
|
377 |
+
0.48663658648729347,
|
378 |
+
0.12612193301320096,
|
379 |
+
0.02228020317852497
|
380 |
+
]
|
381 |
+
}
|
382 |
+
},
|
383 |
+
"action": {
|
384 |
+
"left_arm": {
|
385 |
+
"max": [
|
386 |
+
1.4113223552703857,
|
387 |
+
1.8901419639587402,
|
388 |
+
1.7754145860671997,
|
389 |
+
7.309383363462985e-05,
|
390 |
+
2.563594102859497,
|
391 |
+
1.5000243186950684,
|
392 |
+
1.4908421039581299
|
393 |
+
],
|
394 |
+
"min": [
|
395 |
+
-2.291214942932129,
|
396 |
+
-0.001746351015754044,
|
397 |
+
-2.4999990463256836,
|
398 |
+
-2.814260482788086,
|
399 |
+
-2.3611011505126953,
|
400 |
+
-1.4937989711761475,
|
401 |
+
-1.4969758987426758
|
402 |
+
],
|
403 |
+
"mean": [
|
404 |
+
-0.17771673202514648,
|
405 |
+
0.18351773917675016,
|
406 |
+
-0.1372099369764328,
|
407 |
+
-1.0842658281326294,
|
408 |
+
0.14675945043563843,
|
409 |
+
0.1292145699262619,
|
410 |
+
-0.09504522383213042
|
411 |
+
],
|
412 |
+
"std": [
|
413 |
+
0.4174487590789795,
|
414 |
+
0.18478454649448398,
|
415 |
+
0.25687918066978455,
|
416 |
+
0.5807053446769714,
|
417 |
+
0.3365735411643982,
|
418 |
+
0.2984270751476288,
|
419 |
+
0.3153652846813202
|
420 |
+
],
|
421 |
+
"q01": [
|
422 |
+
-1.6055770933628082,
|
423 |
+
-7.429541994952153e-07,
|
424 |
+
-0.9837155520915983,
|
425 |
+
-2.480029511451721,
|
426 |
+
-0.9457575023174285,
|
427 |
+
-0.7192997813224793,
|
428 |
+
-1.008323037624359
|
429 |
+
],
|
430 |
+
"q99": [
|
431 |
+
0.6335921049118056,
|
432 |
+
0.8018405169248584,
|
433 |
+
0.39303458780050327,
|
434 |
+
-0.0636610623449087,
|
435 |
+
1.0508334636688232,
|
436 |
+
0.8918659299612055,
|
437 |
+
0.5138001590967183
|
438 |
+
]
|
439 |
+
},
|
440 |
+
"left_hand": {
|
441 |
+
"max": [
|
442 |
+
1.5707963705062866,
|
443 |
+
1.646651268005371,
|
444 |
+
1.709236979484558,
|
445 |
+
2.0620639324188232,
|
446 |
+
3.0,
|
447 |
+
3.0
|
448 |
+
],
|
449 |
+
"min": [
|
450 |
+
-1.9597030878067017,
|
451 |
+
-1.8635213375091553,
|
452 |
+
-1.9709523916244507,
|
453 |
+
-1.5,
|
454 |
+
-3.0,
|
455 |
+
0.0
|
456 |
+
],
|
457 |
+
"mean": [
|
458 |
+
-0.22721463441848755,
|
459 |
+
-0.21956320106983185,
|
460 |
+
-0.2144497036933899,
|
461 |
+
-0.21446840465068817,
|
462 |
+
-0.48631641268730164,
|
463 |
+
1.6838233470916748
|
464 |
+
],
|
465 |
+
"std": [
|
466 |
+
1.0050891637802124,
|
467 |
+
1.012416124343872,
|
468 |
+
1.0138051509857178,
|
469 |
+
1.020043969154358,
|
470 |
+
2.066762685775757,
|
471 |
+
1.4588384628295898
|
472 |
+
],
|
473 |
+
"q01": [
|
474 |
+
-1.5,
|
475 |
+
-1.5,
|
476 |
+
-1.5,
|
477 |
+
-1.5,
|
478 |
+
-3.0,
|
479 |
+
0.0
|
480 |
+
],
|
481 |
+
"q99": [
|
482 |
+
1.5,
|
483 |
+
1.5,
|
484 |
+
1.5,
|
485 |
+
1.5,
|
486 |
+
3.0,
|
487 |
+
3.0
|
488 |
+
]
|
489 |
+
},
|
490 |
+
"left_leg": {
|
491 |
+
"max": [
|
492 |
+
0.0,
|
493 |
+
0.0,
|
494 |
+
0.0,
|
495 |
+
0.0,
|
496 |
+
0.0,
|
497 |
+
0.0
|
498 |
+
],
|
499 |
+
"min": [
|
500 |
+
0.0,
|
501 |
+
0.0,
|
502 |
+
0.0,
|
503 |
+
0.0,
|
504 |
+
0.0,
|
505 |
+
0.0
|
506 |
+
],
|
507 |
+
"mean": [
|
508 |
+
0.0,
|
509 |
+
0.0,
|
510 |
+
0.0,
|
511 |
+
0.0,
|
512 |
+
0.0,
|
513 |
+
0.0
|
514 |
+
],
|
515 |
+
"std": [
|
516 |
+
0.0,
|
517 |
+
0.0,
|
518 |
+
0.0,
|
519 |
+
0.0,
|
520 |
+
0.0,
|
521 |
+
0.0
|
522 |
+
],
|
523 |
+
"q01": [
|
524 |
+
0.0,
|
525 |
+
0.0,
|
526 |
+
0.0,
|
527 |
+
0.0,
|
528 |
+
0.0,
|
529 |
+
0.0
|
530 |
+
],
|
531 |
+
"q99": [
|
532 |
+
0.0,
|
533 |
+
0.0,
|
534 |
+
0.0,
|
535 |
+
0.0,
|
536 |
+
0.0,
|
537 |
+
0.0
|
538 |
+
]
|
539 |
+
},
|
540 |
+
"neck": {
|
541 |
+
"max": [
|
542 |
+
0.0,
|
543 |
+
0.0,
|
544 |
+
0.0
|
545 |
+
],
|
546 |
+
"min": [
|
547 |
+
0.0,
|
548 |
+
0.0,
|
549 |
+
0.0
|
550 |
+
],
|
551 |
+
"mean": [
|
552 |
+
0.0,
|
553 |
+
0.0,
|
554 |
+
0.0
|
555 |
+
],
|
556 |
+
"std": [
|
557 |
+
0.0,
|
558 |
+
0.0,
|
559 |
+
0.0
|
560 |
+
],
|
561 |
+
"q01": [
|
562 |
+
0.0,
|
563 |
+
0.0,
|
564 |
+
0.0
|
565 |
+
],
|
566 |
+
"q99": [
|
567 |
+
0.0,
|
568 |
+
0.0,
|
569 |
+
0.0
|
570 |
+
]
|
571 |
+
},
|
572 |
+
"right_arm": {
|
573 |
+
"max": [
|
574 |
+
1.7834906578063965,
|
575 |
+
0.0002448999439366162,
|
576 |
+
2.549729585647583,
|
577 |
+
7.45560391806066e-05,
|
578 |
+
3.0000460147857666,
|
579 |
+
1.4975632429122925,
|
580 |
+
1.4998434782028198
|
581 |
+
],
|
582 |
+
"min": [
|
583 |
+
-2.318650960922241,
|
584 |
+
-2.9999561309814453,
|
585 |
+
-1.9257696866989136,
|
586 |
+
-2.8759055137634277,
|
587 |
+
-2.620600461959839,
|
588 |
+
-1.5001521110534668,
|
589 |
+
-1.4994292259216309
|
590 |
+
],
|
591 |
+
"mean": [
|
592 |
+
-0.16953834891319275,
|
593 |
+
-0.2535267770290375,
|
594 |
+
0.08221600204706192,
|
595 |
+
-1.1492931842803955,
|
596 |
+
0.21761417388916016,
|
597 |
+
0.0431099571287632,
|
598 |
+
0.041337188333272934
|
599 |
+
],
|
600 |
+
"std": [
|
601 |
+
0.5752111673355103,
|
602 |
+
0.2584686279296875,
|
603 |
+
0.341155469417572,
|
604 |
+
0.7394758462905884,
|
605 |
+
0.48707106709480286,
|
606 |
+
0.3721199631690979,
|
607 |
+
0.5423213839530945
|
608 |
+
],
|
609 |
+
"q01": [
|
610 |
+
-1.4375487387180328,
|
611 |
+
-1.0682010412216187,
|
612 |
+
-0.7535711079835892,
|
613 |
+
-2.6383612155914307,
|
614 |
+
-0.7471688866615296,
|
615 |
+
-0.8604200631380081,
|
616 |
+
-1.090039813518524
|
617 |
+
],
|
618 |
+
"q99": [
|
619 |
+
1.1753968834877018,
|
620 |
+
-9.999999974752427e-07,
|
621 |
+
0.8976036489009873,
|
622 |
+
-0.05795218236744387,
|
623 |
+
1.4876463234424593,
|
624 |
+
0.877433916926385,
|
625 |
+
1.464138692617417
|
626 |
+
]
|
627 |
+
},
|
628 |
+
"right_hand": {
|
629 |
+
"max": [
|
630 |
+
1.5707963705062866,
|
631 |
+
1.7183797359466553,
|
632 |
+
3.979951858520508,
|
633 |
+
3.9879753589630127,
|
634 |
+
3.0,
|
635 |
+
3.0
|
636 |
+
],
|
637 |
+
"min": [
|
638 |
+
-1.5,
|
639 |
+
-1.5,
|
640 |
+
-1.5,
|
641 |
+
-1.5,
|
642 |
+
-3.0,
|
643 |
+
4.470348358154297e-08
|
644 |
+
],
|
645 |
+
"mean": [
|
646 |
+
-0.5435706377029419,
|
647 |
+
-0.5304322242736816,
|
648 |
+
-0.5179098844528198,
|
649 |
+
-0.4968528747558594,
|
650 |
+
-1.1343770027160645,
|
651 |
+
2.1282095909118652
|
652 |
+
],
|
653 |
+
"std": [
|
654 |
+
1.1248024702072144,
|
655 |
+
1.1392076015472412,
|
656 |
+
1.1426663398742676,
|
657 |
+
1.3018625974655151,
|
658 |
+
2.1998753547668457,
|
659 |
+
0.9186902642250061
|
660 |
+
],
|
661 |
+
"q01": [
|
662 |
+
-1.5,
|
663 |
+
-1.5,
|
664 |
+
-1.5,
|
665 |
+
-1.5,
|
666 |
+
-3.0,
|
667 |
+
0.0433624254539609
|
668 |
+
],
|
669 |
+
"q99": [
|
670 |
+
1.5,
|
671 |
+
1.5,
|
672 |
+
1.5,
|
673 |
+
1.5,
|
674 |
+
3.0,
|
675 |
+
3.0
|
676 |
+
]
|
677 |
+
},
|
678 |
+
"right_leg": {
|
679 |
+
"max": [
|
680 |
+
0.0,
|
681 |
+
0.0,
|
682 |
+
0.0,
|
683 |
+
0.0,
|
684 |
+
0.0,
|
685 |
+
0.0
|
686 |
+
],
|
687 |
+
"min": [
|
688 |
+
0.0,
|
689 |
+
0.0,
|
690 |
+
0.0,
|
691 |
+
0.0,
|
692 |
+
0.0,
|
693 |
+
0.0
|
694 |
+
],
|
695 |
+
"mean": [
|
696 |
+
0.0,
|
697 |
+
0.0,
|
698 |
+
0.0,
|
699 |
+
0.0,
|
700 |
+
0.0,
|
701 |
+
0.0
|
702 |
+
],
|
703 |
+
"std": [
|
704 |
+
0.0,
|
705 |
+
0.0,
|
706 |
+
0.0,
|
707 |
+
0.0,
|
708 |
+
0.0,
|
709 |
+
0.0
|
710 |
+
],
|
711 |
+
"q01": [
|
712 |
+
0.0,
|
713 |
+
0.0,
|
714 |
+
0.0,
|
715 |
+
0.0,
|
716 |
+
0.0,
|
717 |
+
0.0
|
718 |
+
],
|
719 |
+
"q99": [
|
720 |
+
0.0,
|
721 |
+
0.0,
|
722 |
+
0.0,
|
723 |
+
0.0,
|
724 |
+
0.0,
|
725 |
+
0.0
|
726 |
+
]
|
727 |
+
},
|
728 |
+
"waist": {
|
729 |
+
"max": [
|
730 |
+
1.049119234085083,
|
731 |
+
0.6198405623435974,
|
732 |
+
0.45177245140075684
|
733 |
+
],
|
734 |
+
"min": [
|
735 |
+
-0.8292319774627686,
|
736 |
+
-0.5185094475746155,
|
737 |
+
-0.37811079621315
|
738 |
+
],
|
739 |
+
"mean": [
|
740 |
+
0.014836843125522135,
|
741 |
+
0.01042813528329134,
|
742 |
+
-0.00014937532250769436
|
743 |
+
],
|
744 |
+
"std": [
|
745 |
+
0.12568794190883636,
|
746 |
+
0.030695030465722084,
|
747 |
+
0.004574332851916552
|
748 |
+
],
|
749 |
+
"q01": [
|
750 |
+
-0.3402548208832741,
|
751 |
+
-0.025130789913237094,
|
752 |
+
-0.016220059804618357
|
753 |
+
],
|
754 |
+
"q99": [
|
755 |
+
0.4959896907210364,
|
756 |
+
0.12137954644858845,
|
757 |
+
0.010726323025301111
|
758 |
+
]
|
759 |
+
}
|
760 |
+
},
|
761 |
+
"total_trajectory_length": 63066032,
|
762 |
+
"num_trajectories": 226554
|
763 |
+
},
|
764 |
+
"modalities": {
|
765 |
+
"video": {
|
766 |
+
"ego_view": {
|
767 |
+
"resolution": [
|
768 |
+
256,
|
769 |
+
256
|
770 |
+
],
|
771 |
+
"channels": 3,
|
772 |
+
"fps": 20.0
|
773 |
+
}
|
774 |
+
},
|
775 |
+
"state": {
|
776 |
+
"left_arm": {
|
777 |
+
"absolute": true,
|
778 |
+
"rotation_type": null,
|
779 |
+
"shape": [
|
780 |
+
7
|
781 |
+
],
|
782 |
+
"continuous": true
|
783 |
+
},
|
784 |
+
"left_hand": {
|
785 |
+
"absolute": true,
|
786 |
+
"rotation_type": null,
|
787 |
+
"shape": [
|
788 |
+
6
|
789 |
+
],
|
790 |
+
"continuous": true
|
791 |
+
},
|
792 |
+
"left_leg": {
|
793 |
+
"absolute": true,
|
794 |
+
"rotation_type": null,
|
795 |
+
"shape": [
|
796 |
+
6
|
797 |
+
],
|
798 |
+
"continuous": true
|
799 |
+
},
|
800 |
+
"neck": {
|
801 |
+
"absolute": true,
|
802 |
+
"rotation_type": null,
|
803 |
+
"shape": [
|
804 |
+
3
|
805 |
+
],
|
806 |
+
"continuous": true
|
807 |
+
},
|
808 |
+
"right_arm": {
|
809 |
+
"absolute": true,
|
810 |
+
"rotation_type": null,
|
811 |
+
"shape": [
|
812 |
+
7
|
813 |
+
],
|
814 |
+
"continuous": true
|
815 |
+
},
|
816 |
+
"right_hand": {
|
817 |
+
"absolute": true,
|
818 |
+
"rotation_type": null,
|
819 |
+
"shape": [
|
820 |
+
6
|
821 |
+
],
|
822 |
+
"continuous": true
|
823 |
+
},
|
824 |
+
"right_leg": {
|
825 |
+
"absolute": true,
|
826 |
+
"rotation_type": null,
|
827 |
+
"shape": [
|
828 |
+
6
|
829 |
+
],
|
830 |
+
"continuous": true
|
831 |
+
},
|
832 |
+
"waist": {
|
833 |
+
"absolute": true,
|
834 |
+
"rotation_type": null,
|
835 |
+
"shape": [
|
836 |
+
3
|
837 |
+
],
|
838 |
+
"continuous": true
|
839 |
+
}
|
840 |
+
},
|
841 |
+
"action": {
|
842 |
+
"left_arm": {
|
843 |
+
"absolute": true,
|
844 |
+
"rotation_type": null,
|
845 |
+
"shape": [
|
846 |
+
7
|
847 |
+
],
|
848 |
+
"continuous": true
|
849 |
+
},
|
850 |
+
"left_hand": {
|
851 |
+
"absolute": true,
|
852 |
+
"rotation_type": null,
|
853 |
+
"shape": [
|
854 |
+
6
|
855 |
+
],
|
856 |
+
"continuous": true
|
857 |
+
},
|
858 |
+
"left_leg": {
|
859 |
+
"absolute": true,
|
860 |
+
"rotation_type": null,
|
861 |
+
"shape": [
|
862 |
+
6
|
863 |
+
],
|
864 |
+
"continuous": true
|
865 |
+
},
|
866 |
+
"neck": {
|
867 |
+
"absolute": true,
|
868 |
+
"rotation_type": null,
|
869 |
+
"shape": [
|
870 |
+
3
|
871 |
+
],
|
872 |
+
"continuous": true
|
873 |
+
},
|
874 |
+
"right_arm": {
|
875 |
+
"absolute": true,
|
876 |
+
"rotation_type": null,
|
877 |
+
"shape": [
|
878 |
+
7
|
879 |
+
],
|
880 |
+
"continuous": true
|
881 |
+
},
|
882 |
+
"right_hand": {
|
883 |
+
"absolute": true,
|
884 |
+
"rotation_type": null,
|
885 |
+
"shape": [
|
886 |
+
6
|
887 |
+
],
|
888 |
+
"continuous": true
|
889 |
+
},
|
890 |
+
"right_leg": {
|
891 |
+
"absolute": true,
|
892 |
+
"rotation_type": null,
|
893 |
+
"shape": [
|
894 |
+
6
|
895 |
+
],
|
896 |
+
"continuous": true
|
897 |
+
},
|
898 |
+
"waist": {
|
899 |
+
"absolute": true,
|
900 |
+
"rotation_type": null,
|
901 |
+
"shape": [
|
902 |
+
3
|
903 |
+
],
|
904 |
+
"continuous": true
|
905 |
+
}
|
906 |
+
},
|
907 |
+
"annotation": {
|
908 |
+
"human": [
|
909 |
+
"action.verb",
|
910 |
+
"action.object",
|
911 |
+
"action.start_location",
|
912 |
+
"action.end_location",
|
913 |
+
"action.hand",
|
914 |
+
"action.rating",
|
915 |
+
"action.failure_code",
|
916 |
+
"action.remarks",
|
917 |
+
"coarse_action",
|
918 |
+
"fine_action",
|
919 |
+
"validity"
|
920 |
+
]
|
921 |
+
}
|
922 |
+
},
|
923 |
+
"embodiment": {
|
924 |
+
"robot_name": "gr00t004, gr00t001, gr00t003, gr00t005, gr00t006, gr00t007",
|
925 |
+
"robot_type": "GR1T2, GR1T1, GR1T2, GR1T2, GR1T2, GR1T2",
|
926 |
+
"record_frequency": 20.0,
|
927 |
+
"body_controller_frequency": 120.0,
|
928 |
+
"hand_controller_frequency": 40.0,
|
929 |
+
"embodiment_tag": "gr1_unified"
|
930 |
+
},
|
931 |
+
"processing": null,
|
932 |
+
"version": null
|
933 |
+
}
|
934 |
+
}
|
global_step60000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6498a18f5a01c89992c29d24d03e7aa72fe5354193604ee91ae3e5fa54fed53
|
3 |
+
size 918308912
|
global_step60000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f6c2692203262082568739dbfe1eb921f1e8430f8fdc57a2d6685e249016fdd
|
3 |
+
size 918308592
|
global_step60000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b571564bc648751daa672016900ee8c4f5bbf5960fded0a4c38cd389140c8735
|
3 |
+
size 918308976
|
global_step60000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b83dbbdcd9eca607e147f0c9fc6ea248693b95e5e441f23a84226649c2272b4
|
3 |
+
size 918308592
|
global_step60000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6b1b4a4d5176bf748dc25c3b8a4329c61415b49685736e8b1c7b630f26e980
|
3 |
+
size 918308144
|
global_step60000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fda8acc1148643c7df260a2360ebe9f357266ba421558d6defef379ead74eb1
|
3 |
+
size 918307184
|
global_step60000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:343eccd3a900e86095d99b3251ce7ba72737aca749e64275f0a37786652d47a2
|
3 |
+
size 918303664
|
global_step60000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e44e6313aca11f286d65a5ff8a8beb3405aa12528830907c52057e3321c73c8a
|
3 |
+
size 918304048
|
global_step60000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5275e187ae20f381d3f6a18cbaf518cfd2eda8c3ef1d3a6da873d970087a8e33
|
3 |
+
size 1325387042
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step60000
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:575aba6acf8b14462410688cddd9e4f023f096d0c97a768b1ec16368aa92f298
|
3 |
+
size 1274863076
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eafc2a4bb1f9d7dba9475ca28e61e1105bd48e4459b071d3ed0d1b76aa1c261a
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:821ac307cd326308bdbf3bf8c0b0e3fd1f12261d3d391b719e82107f7e0e3f77
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9906bf1ffc05c9593c09f68867cd9688c751a91b4ea3b87ec32ccc6ec5e45c6c
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d570d2f204a2b93b4562bbe0bb40b0dbaad7ef740ac66c70d32bfdf4b0b589b
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6955b3cceacd7bb106d6567a2744ea608765afc4b447e9b8a2fb08fd33a18b0c
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df6c0417c7e490e0a662efd9d65c50a17fce6d4bab92da3f2bfc83d156d4b82c
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13191fd984b806d00370ac2e2290a08d7d0acd6e7efd224395a06260642dc9e0
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7865bc20171325a58c9418fbdce6222a60c3af36414cc9383cde59312fa2c3f9
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb677b69d5815e7e1f5f341ea75c4bd0f7789a7a85a36e672ade3f744edffa5f
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01ed6037a3d44bff78f5206941cb323b77a67cb7d2a69395c61abb9b801275e0
|
3 |
+
size 14954652
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|