seonghyeonye commited on
Commit
7255d3e
·
verified ·
1 Parent(s): bfa97ba

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ trainer_state.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/amlfs-01/home/seonghyeony/checkpoints/groot_s_gr1_idm_real_global_stats",
3
+ "action_dim": 32,
4
+ "action_head_cfg": {
5
+ "_convert_": "object",
6
+ "_target_": "gr00t.model.action_head.flow_matching_action_head_idm.FlowMatchingActionHeadIDM",
7
+ "config": {
8
+ "_recursive_": false,
9
+ "_target_": "gr00t.model.action_head.flow_matching_action_head_idm.FlowMatchingActionHeadIDMConfig",
10
+ "action_dim": 32,
11
+ "action_horizon": 16,
12
+ "add_pos_embed": true,
13
+ "add_seperator_token": true,
14
+ "add_view_embed": true,
15
+ "backbone_features_projector_cfg": null,
16
+ "diffusion_model_cfg": {
17
+ "_target_": "gr00t.model.action_head.cross_attention_dit.DiT",
18
+ "attention_head_dim": 64,
19
+ "dropout": 0.2,
20
+ "final_dropout": true,
21
+ "interleave_self_attention": true,
22
+ "norm_type": "ada_norm",
23
+ "num_attention_heads": 16,
24
+ "num_layers": 8,
25
+ "output_dim": 1024,
26
+ "positional_embeddings": null
27
+ },
28
+ "hidden_size": 1024,
29
+ "max_action_dim": 32,
30
+ "max_num_views": 3,
31
+ "max_state_dim": 44,
32
+ "mm_projector_cfg": {
33
+ "_convert_": "object",
34
+ "_target_": "gr00t.model.action_head.multimodal_projector.MultimodalProjector",
35
+ "config": {
36
+ "_target_": "gr00t.model.action_head.multimodal_projector.MultimodalProjectorConfig",
37
+ "hidden_size": 1024,
38
+ "mm_hidden_size": 1024,
39
+ "mm_projector_type": "mlp_doubledownsample"
40
+ }
41
+ },
42
+ "mm_vision_select_layer": -2,
43
+ "model_dtype": "float32",
44
+ "noise_beta_alpha": 1.5,
45
+ "noise_beta_beta": 1.0,
46
+ "noise_s": 0.999,
47
+ "num_inference_timesteps": 16,
48
+ "num_timestep_buckets": 1000,
49
+ "siglip_hidden_size": 1024,
50
+ "siglip_model_cfg": {
51
+ "_convert_": "object",
52
+ "_target_": "gr00t.model.action_head.siglip.SiglipModel.from_pretrained",
53
+ "pretrained_model_name_or_path": "google/siglip2-large-patch16-256"
54
+ },
55
+ "tune_vision_tower": true,
56
+ "vl_self_attention_cfg": {
57
+ "_target_": "gr00t.model.action_head.cross_attention_dit.SelfAttentionTransformer",
58
+ "attention_head_dim": 64,
59
+ "dropout": 0.2,
60
+ "final_dropout": true,
61
+ "num_attention_heads": 16,
62
+ "num_layers": 4,
63
+ "positional_embeddings": null
64
+ }
65
+ }
66
+ },
67
+ "action_horizon": 16,
68
+ "architectures": [
69
+ "IDM"
70
+ ],
71
+ "backbone_cfg": {
72
+ "_target_": "gr00t.model.backbone.IdentityBackbone"
73
+ },
74
+ "hidden_size": 0,
75
+ "model_dtype": "float32",
76
+ "model_type": "dual_brain",
77
+ "resume_path": "/mnt/amlfs-01/home/seonghyeony/checkpoints/groot_s_gr1_idm_real_global_stats",
78
+ "torch_dtype": "bfloat16",
79
+ "transformers_version": "4.48.0"
80
+ }
experiment_cfg/conf.yaml ADDED
The diff for this file is too large to render. See raw diff
 
experiment_cfg/metadata.json ADDED
@@ -0,0 +1,934 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "gr1_unified": {
3
+ "dataset_name": "gr1_unified:FullSet, gr1_unified:FullSet",
4
+ "dataset_statistics": {
5
+ "state": {
6
+ "left_arm": {
7
+ "max": [
8
+ 1.3570959568023682,
9
+ 1.5781080722808838,
10
+ 1.7425614595413208,
11
+ 0.04977008327841759,
12
+ 2.521491289138794,
13
+ 1.5104753971099854,
14
+ 1.3451268672943115
15
+ ],
16
+ "min": [
17
+ -1.7593636512756348,
18
+ -0.08899051696062088,
19
+ -1.6571800708770752,
20
+ -2.516343355178833,
21
+ -2.307133436203003,
22
+ -1.4132264852523804,
23
+ -1.4408576488494873
24
+ ],
25
+ "mean": [
26
+ -0.1721954196691513,
27
+ 0.18329788744449615,
28
+ -0.13603615760803223,
29
+ -1.0807313919067383,
30
+ 0.14450088143348694,
31
+ 0.1319544017314911,
32
+ -0.08306947350502014
33
+ ],
34
+ "std": [
35
+ 0.40682145953178406,
36
+ 0.18259239196777344,
37
+ 0.25132784247398376,
38
+ 0.5786943435668945,
39
+ 0.33050763607025146,
40
+ 0.28609949350357056,
41
+ 0.30134323239326477
42
+ ],
43
+ "q01": [
44
+ -1.601158422231674,
45
+ -0.0004831812286283818,
46
+ -0.9488833963871002,
47
+ -2.43623423576355,
48
+ -0.940359205007553,
49
+ -0.648951044678688,
50
+ -0.9641011685132981
51
+ ],
52
+ "q99": [
53
+ 0.6305126994848265,
54
+ 0.7966297268867493,
55
+ 0.3873166218400003,
56
+ -0.07399308793246723,
57
+ 1.0455405175685888,
58
+ 0.8574009954929354,
59
+ 0.48388660699129127
60
+ ]
61
+ },
62
+ "left_hand": {
63
+ "max": [
64
+ 2.8765757083892822,
65
+ 2.6975045204162598,
66
+ 3.3291828632354736,
67
+ 2.7148845195770264,
68
+ 3.664421558380127,
69
+ 3.5466625690460205
70
+ ],
71
+ "min": [
72
+ -3.262805700302124,
73
+ -2.7771592140197754,
74
+ -3.4712820053100586,
75
+ -2.7828404903411865,
76
+ -2.197380781173706,
77
+ -2.636387825012207
78
+ ],
79
+ "mean": [
80
+ 0.21940384805202484,
81
+ 0.21819256246089935,
82
+ 0.20426052808761597,
83
+ 0.22833923995494843,
84
+ 0.06841608136892319,
85
+ 0.9091449975967407
86
+ ],
87
+ "std": [
88
+ 0.42784574627876276,
89
+ 0.41304099559783936,
90
+ 0.3710329830646515,
91
+ 0.42297253012657166,
92
+ 0.18603332340717316,
93
+ 0.7297042012214661
94
+ ],
95
+ "q01": [
96
+ -0.17130047902464868,
97
+ -0.002568027237430215,
98
+ -0.0029985445667989547,
99
+ -0.0024907408631406726,
100
+ -0.14894675761461257,
101
+ -0.0002731013679294847
102
+ ],
103
+ "q99": [
104
+ 1.5014824867248535,
105
+ 1.5016536712646484,
106
+ 1.404326802492144,
107
+ 1.5127789616584781,
108
+ 0.7817099303007136,
109
+ 1.872669064998627
110
+ ]
111
+ },
112
+ "left_leg": {
113
+ "max": [
114
+ 0.0,
115
+ 0.0,
116
+ 0.0,
117
+ 0.0,
118
+ 5.186659473110922e-05,
119
+ 0.0
120
+ ],
121
+ "min": [
122
+ 0.0,
123
+ 0.0,
124
+ 0.0,
125
+ 0.0,
126
+ -2.446335656713927e-06,
127
+ -1.6033794963732362e-05
128
+ ],
129
+ "mean": [
130
+ 0.0,
131
+ 0.0,
132
+ 0.0,
133
+ 0.0,
134
+ 7.68979953136295e-06,
135
+ -2.6351963242632337e-06
136
+ ],
137
+ "std": [
138
+ 0.0,
139
+ 0.0,
140
+ 0.0,
141
+ 0.0,
142
+ 1.7361962818540633e-05,
143
+ 5.2996829253970645e-06
144
+ ],
145
+ "q01": [
146
+ 0.0,
147
+ 0.0,
148
+ 0.0,
149
+ 0.0,
150
+ -2.446335656713927e-06,
151
+ -1.6033794963732362e-05
152
+ ],
153
+ "q99": [
154
+ 0.0,
155
+ 0.0,
156
+ 0.0,
157
+ 0.0,
158
+ 5.186659473110922e-05,
159
+ 0.0
160
+ ]
161
+ },
162
+ "neck": {
163
+ "max": [
164
+ 0.01535311620682478,
165
+ 0.05556071177124977,
166
+ 0.008969387039542198
167
+ ],
168
+ "min": [
169
+ -0.23586410284042358,
170
+ -0.03865945711731911,
171
+ -0.06754876673221588
172
+ ],
173
+ "mean": [
174
+ -0.0008622645400464535,
175
+ 5.3951262088958174e-05,
176
+ -0.00013521323853638023
177
+ ],
178
+ "std": [
179
+ 0.01196372415870428,
180
+ 0.0034790514037013054,
181
+ 0.0031053286511451006
182
+ ],
183
+ "q01": [
184
+ -0.00492388429120183,
185
+ -0.0027977502904832363,
186
+ 0.0
187
+ ],
188
+ "q99": [
189
+ 2.9924885893706232e-06,
190
+ 0.0002969176275655627,
191
+ 0.0
192
+ ]
193
+ },
194
+ "right_arm": {
195
+ "max": [
196
+ 1.7399436235427856,
197
+ 0.07876992970705032,
198
+ 2.5426626205444336,
199
+ 0.048908114433288574,
200
+ 3.000918388366699,
201
+ 1.4513440132141113,
202
+ 1.5000383853912354
203
+ ],
204
+ "min": [
205
+ -2.2743337154388428,
206
+ -2.999122142791748,
207
+ -1.7424250841140747,
208
+ -2.536545753479004,
209
+ -2.6034910678863525,
210
+ -1.5032434463500977,
211
+ -1.4913568496704102
212
+ ],
213
+ "mean": [
214
+ -0.1590277999639511,
215
+ -0.2511773109436035,
216
+ 0.08599518239498138,
217
+ -1.1420482397079468,
218
+ 0.21259814500808716,
219
+ 0.04237671568989754,
220
+ 0.03427042067050934
221
+ ],
222
+ "std": [
223
+ 0.563156247138977,
224
+ 0.24450603127479553,
225
+ 0.32825493812561035,
226
+ 0.7310536503791809,
227
+ 0.4813914895057678,
228
+ 0.35611921548843384,
229
+ 0.509053111076355
230
+ ],
231
+ "q01": [
232
+ -1.423364037275314,
233
+ -1.0436977982521056,
234
+ -0.7169023394584656,
235
+ -2.4936094284057613,
236
+ -0.7377233326435089,
237
+ -0.803617289662361,
238
+ -0.9991738587617873
239
+ ],
240
+ "q99": [
241
+ 1.1677674055099487,
242
+ 0.0006303858070168663,
243
+ 0.8771779745817194,
244
+ -0.0582109544426202,
245
+ 1.4707317113876357,
246
+ 0.8474899172782919,
247
+ 1.2271583080291748
248
+ ]
249
+ },
250
+ "right_hand": {
251
+ "max": [
252
+ 2.397510290145874,
253
+ 2.4422738552093506,
254
+ 3.0158462524414062,
255
+ 2.457378625869751,
256
+ 1.4605257511138916,
257
+ 2.168534278869629
258
+ ],
259
+ "min": [
260
+ -1.7595213651657104,
261
+ -1.8982670307159424,
262
+ -1.8622381687164307,
263
+ -1.8314869403839111,
264
+ -1.0045679807662964,
265
+ -0.31411829590797424
266
+ ],
267
+ "mean": [
268
+ 0.3499335348606109,
269
+ 0.3412855267524719,
270
+ 0.3271332383155823,
271
+ 0.357576698064804,
272
+ 0.09723818302154541,
273
+ 1.0641368627548218
274
+ ],
275
+ "std": [
276
+ 0.49147421121597296,
277
+ 0.4654525816440582,
278
+ 0.4451630115509033,
279
+ 0.48662698268890386,
280
+ 0.1814946085214615,
281
+ 0.5735033154487608
282
+ ],
283
+ "q01": [
284
+ -0.004218762856908143,
285
+ -0.004575904295779765,
286
+ -0.005576773989014327,
287
+ -0.004707079078070819,
288
+ -0.18967307358980176,
289
+ 0.03200087323784828
290
+ ],
291
+ "q99": [
292
+ 1.4994217157363892,
293
+ 1.5029035806655884,
294
+ 1.661455136537552,
295
+ 1.5188306391239168,
296
+ 0.6953653633594525,
297
+ 1.8182492077350618
298
+ ]
299
+ },
300
+ "right_leg": {
301
+ "max": [
302
+ 0.0,
303
+ 0.0,
304
+ 0.0,
305
+ 0.0,
306
+ 5.369959126255708e-06,
307
+ 0.0
308
+ ],
309
+ "min": [
310
+ 0.0,
311
+ 0.0,
312
+ 0.0,
313
+ 0.0,
314
+ -2.446335656713927e-06,
315
+ -5.166131450096145e-05
316
+ ],
317
+ "mean": [
318
+ 0.0,
319
+ 0.0,
320
+ 0.0,
321
+ 0.0,
322
+ 8.152188684107387e-07,
323
+ -7.940252544358373e-06
324
+ ],
325
+ "std": [
326
+ 0.0,
327
+ 0.0,
328
+ 0.0,
329
+ 0.0,
330
+ 1.92081461136695e-06,
331
+ 1.7361962818540633e-05
332
+ ],
333
+ "q01": [
334
+ 0.0,
335
+ 0.0,
336
+ 0.0,
337
+ 0.0,
338
+ -2.446335656713927e-06,
339
+ -5.1661314500961446e-05
340
+ ],
341
+ "q99": [
342
+ 0.0,
343
+ 0.0,
344
+ 0.0,
345
+ 0.0,
346
+ 5.369959126255708e-06,
347
+ 0.0
348
+ ]
349
+ },
350
+ "waist": {
351
+ "max": [
352
+ 1.0323854684829712,
353
+ 0.7102982997894287,
354
+ 0.43762317299842834
355
+ ],
356
+ "min": [
357
+ -0.8131351470947266,
358
+ -0.4901888370513916,
359
+ -0.7304351925849915
360
+ ],
361
+ "mean": [
362
+ 0.014510802924633026,
363
+ 0.014398206025362015,
364
+ -0.00020241182937752455
365
+ ],
366
+ "std": [
367
+ 0.12270263582468033,
368
+ 0.032448362559080124,
369
+ 0.00728295324370265
370
+ ],
371
+ "q01": [
372
+ -0.33650725632905953,
373
+ -0.0290498711168766,
374
+ -0.026060330495238305
375
+ ],
376
+ "q99": [
377
+ 0.48663658648729347,
378
+ 0.12612193301320096,
379
+ 0.02228020317852497
380
+ ]
381
+ }
382
+ },
383
+ "action": {
384
+ "left_arm": {
385
+ "max": [
386
+ 1.4113223552703857,
387
+ 1.8901419639587402,
388
+ 1.7754145860671997,
389
+ 7.309383363462985e-05,
390
+ 2.563594102859497,
391
+ 1.5000243186950684,
392
+ 1.4908421039581299
393
+ ],
394
+ "min": [
395
+ -2.291214942932129,
396
+ -0.001746351015754044,
397
+ -2.4999990463256836,
398
+ -2.814260482788086,
399
+ -2.3611011505126953,
400
+ -1.4937989711761475,
401
+ -1.4969758987426758
402
+ ],
403
+ "mean": [
404
+ -0.17771673202514648,
405
+ 0.18351773917675016,
406
+ -0.1372099369764328,
407
+ -1.0842658281326294,
408
+ 0.14675945043563843,
409
+ 0.1292145699262619,
410
+ -0.09504522383213042
411
+ ],
412
+ "std": [
413
+ 0.4174487590789795,
414
+ 0.18478454649448398,
415
+ 0.25687918066978455,
416
+ 0.5807053446769714,
417
+ 0.3365735411643982,
418
+ 0.2984270751476288,
419
+ 0.3153652846813202
420
+ ],
421
+ "q01": [
422
+ -1.6055770933628082,
423
+ -7.429541994952153e-07,
424
+ -0.9837155520915983,
425
+ -2.480029511451721,
426
+ -0.9457575023174285,
427
+ -0.7192997813224793,
428
+ -1.008323037624359
429
+ ],
430
+ "q99": [
431
+ 0.6335921049118056,
432
+ 0.8018405169248584,
433
+ 0.39303458780050327,
434
+ -0.0636610623449087,
435
+ 1.0508334636688232,
436
+ 0.8918659299612055,
437
+ 0.5138001590967183
438
+ ]
439
+ },
440
+ "left_hand": {
441
+ "max": [
442
+ 1.5707963705062866,
443
+ 1.646651268005371,
444
+ 1.709236979484558,
445
+ 2.0620639324188232,
446
+ 3.0,
447
+ 3.0
448
+ ],
449
+ "min": [
450
+ -1.9597030878067017,
451
+ -1.8635213375091553,
452
+ -1.9709523916244507,
453
+ -1.5,
454
+ -3.0,
455
+ 0.0
456
+ ],
457
+ "mean": [
458
+ -0.22721463441848755,
459
+ -0.21956320106983185,
460
+ -0.2144497036933899,
461
+ -0.21446840465068817,
462
+ -0.48631641268730164,
463
+ 1.6838233470916748
464
+ ],
465
+ "std": [
466
+ 1.0050891637802124,
467
+ 1.012416124343872,
468
+ 1.0138051509857178,
469
+ 1.020043969154358,
470
+ 2.066762685775757,
471
+ 1.4588384628295898
472
+ ],
473
+ "q01": [
474
+ -1.5,
475
+ -1.5,
476
+ -1.5,
477
+ -1.5,
478
+ -3.0,
479
+ 0.0
480
+ ],
481
+ "q99": [
482
+ 1.5,
483
+ 1.5,
484
+ 1.5,
485
+ 1.5,
486
+ 3.0,
487
+ 3.0
488
+ ]
489
+ },
490
+ "left_leg": {
491
+ "max": [
492
+ 0.0,
493
+ 0.0,
494
+ 0.0,
495
+ 0.0,
496
+ 0.0,
497
+ 0.0
498
+ ],
499
+ "min": [
500
+ 0.0,
501
+ 0.0,
502
+ 0.0,
503
+ 0.0,
504
+ 0.0,
505
+ 0.0
506
+ ],
507
+ "mean": [
508
+ 0.0,
509
+ 0.0,
510
+ 0.0,
511
+ 0.0,
512
+ 0.0,
513
+ 0.0
514
+ ],
515
+ "std": [
516
+ 0.0,
517
+ 0.0,
518
+ 0.0,
519
+ 0.0,
520
+ 0.0,
521
+ 0.0
522
+ ],
523
+ "q01": [
524
+ 0.0,
525
+ 0.0,
526
+ 0.0,
527
+ 0.0,
528
+ 0.0,
529
+ 0.0
530
+ ],
531
+ "q99": [
532
+ 0.0,
533
+ 0.0,
534
+ 0.0,
535
+ 0.0,
536
+ 0.0,
537
+ 0.0
538
+ ]
539
+ },
540
+ "neck": {
541
+ "max": [
542
+ 0.0,
543
+ 0.0,
544
+ 0.0
545
+ ],
546
+ "min": [
547
+ 0.0,
548
+ 0.0,
549
+ 0.0
550
+ ],
551
+ "mean": [
552
+ 0.0,
553
+ 0.0,
554
+ 0.0
555
+ ],
556
+ "std": [
557
+ 0.0,
558
+ 0.0,
559
+ 0.0
560
+ ],
561
+ "q01": [
562
+ 0.0,
563
+ 0.0,
564
+ 0.0
565
+ ],
566
+ "q99": [
567
+ 0.0,
568
+ 0.0,
569
+ 0.0
570
+ ]
571
+ },
572
+ "right_arm": {
573
+ "max": [
574
+ 1.7834906578063965,
575
+ 0.0002448999439366162,
576
+ 2.549729585647583,
577
+ 7.45560391806066e-05,
578
+ 3.0000460147857666,
579
+ 1.4975632429122925,
580
+ 1.4998434782028198
581
+ ],
582
+ "min": [
583
+ -2.318650960922241,
584
+ -2.9999561309814453,
585
+ -1.9257696866989136,
586
+ -2.8759055137634277,
587
+ -2.620600461959839,
588
+ -1.5001521110534668,
589
+ -1.4994292259216309
590
+ ],
591
+ "mean": [
592
+ -0.16953834891319275,
593
+ -0.2535267770290375,
594
+ 0.08221600204706192,
595
+ -1.1492931842803955,
596
+ 0.21761417388916016,
597
+ 0.0431099571287632,
598
+ 0.041337188333272934
599
+ ],
600
+ "std": [
601
+ 0.5752111673355103,
602
+ 0.2584686279296875,
603
+ 0.341155469417572,
604
+ 0.7394758462905884,
605
+ 0.48707106709480286,
606
+ 0.3721199631690979,
607
+ 0.5423213839530945
608
+ ],
609
+ "q01": [
610
+ -1.4375487387180328,
611
+ -1.0682010412216187,
612
+ -0.7535711079835892,
613
+ -2.6383612155914307,
614
+ -0.7471688866615296,
615
+ -0.8604200631380081,
616
+ -1.090039813518524
617
+ ],
618
+ "q99": [
619
+ 1.1753968834877018,
620
+ -9.999999974752427e-07,
621
+ 0.8976036489009873,
622
+ -0.05795218236744387,
623
+ 1.4876463234424593,
624
+ 0.877433916926385,
625
+ 1.464138692617417
626
+ ]
627
+ },
628
+ "right_hand": {
629
+ "max": [
630
+ 1.5707963705062866,
631
+ 1.7183797359466553,
632
+ 3.979951858520508,
633
+ 3.9879753589630127,
634
+ 3.0,
635
+ 3.0
636
+ ],
637
+ "min": [
638
+ -1.5,
639
+ -1.5,
640
+ -1.5,
641
+ -1.5,
642
+ -3.0,
643
+ 4.470348358154297e-08
644
+ ],
645
+ "mean": [
646
+ -0.5435706377029419,
647
+ -0.5304322242736816,
648
+ -0.5179098844528198,
649
+ -0.4968528747558594,
650
+ -1.1343770027160645,
651
+ 2.1282095909118652
652
+ ],
653
+ "std": [
654
+ 1.1248024702072144,
655
+ 1.1392076015472412,
656
+ 1.1426663398742676,
657
+ 1.3018625974655151,
658
+ 2.1998753547668457,
659
+ 0.9186902642250061
660
+ ],
661
+ "q01": [
662
+ -1.5,
663
+ -1.5,
664
+ -1.5,
665
+ -1.5,
666
+ -3.0,
667
+ 0.0433624254539609
668
+ ],
669
+ "q99": [
670
+ 1.5,
671
+ 1.5,
672
+ 1.5,
673
+ 1.5,
674
+ 3.0,
675
+ 3.0
676
+ ]
677
+ },
678
+ "right_leg": {
679
+ "max": [
680
+ 0.0,
681
+ 0.0,
682
+ 0.0,
683
+ 0.0,
684
+ 0.0,
685
+ 0.0
686
+ ],
687
+ "min": [
688
+ 0.0,
689
+ 0.0,
690
+ 0.0,
691
+ 0.0,
692
+ 0.0,
693
+ 0.0
694
+ ],
695
+ "mean": [
696
+ 0.0,
697
+ 0.0,
698
+ 0.0,
699
+ 0.0,
700
+ 0.0,
701
+ 0.0
702
+ ],
703
+ "std": [
704
+ 0.0,
705
+ 0.0,
706
+ 0.0,
707
+ 0.0,
708
+ 0.0,
709
+ 0.0
710
+ ],
711
+ "q01": [
712
+ 0.0,
713
+ 0.0,
714
+ 0.0,
715
+ 0.0,
716
+ 0.0,
717
+ 0.0
718
+ ],
719
+ "q99": [
720
+ 0.0,
721
+ 0.0,
722
+ 0.0,
723
+ 0.0,
724
+ 0.0,
725
+ 0.0
726
+ ]
727
+ },
728
+ "waist": {
729
+ "max": [
730
+ 1.049119234085083,
731
+ 0.6198405623435974,
732
+ 0.45177245140075684
733
+ ],
734
+ "min": [
735
+ -0.8292319774627686,
736
+ -0.5185094475746155,
737
+ -0.37811079621315
738
+ ],
739
+ "mean": [
740
+ 0.014836843125522135,
741
+ 0.01042813528329134,
742
+ -0.00014937532250769436
743
+ ],
744
+ "std": [
745
+ 0.12568794190883636,
746
+ 0.030695030465722084,
747
+ 0.004574332851916552
748
+ ],
749
+ "q01": [
750
+ -0.3402548208832741,
751
+ -0.025130789913237094,
752
+ -0.016220059804618357
753
+ ],
754
+ "q99": [
755
+ 0.4959896907210364,
756
+ 0.12137954644858845,
757
+ 0.010726323025301111
758
+ ]
759
+ }
760
+ },
761
+ "total_trajectory_length": 63066032,
762
+ "num_trajectories": 226554
763
+ },
764
+ "modalities": {
765
+ "video": {
766
+ "ego_view": {
767
+ "resolution": [
768
+ 256,
769
+ 256
770
+ ],
771
+ "channels": 3,
772
+ "fps": 20.0
773
+ }
774
+ },
775
+ "state": {
776
+ "left_arm": {
777
+ "absolute": true,
778
+ "rotation_type": null,
779
+ "shape": [
780
+ 7
781
+ ],
782
+ "continuous": true
783
+ },
784
+ "left_hand": {
785
+ "absolute": true,
786
+ "rotation_type": null,
787
+ "shape": [
788
+ 6
789
+ ],
790
+ "continuous": true
791
+ },
792
+ "left_leg": {
793
+ "absolute": true,
794
+ "rotation_type": null,
795
+ "shape": [
796
+ 6
797
+ ],
798
+ "continuous": true
799
+ },
800
+ "neck": {
801
+ "absolute": true,
802
+ "rotation_type": null,
803
+ "shape": [
804
+ 3
805
+ ],
806
+ "continuous": true
807
+ },
808
+ "right_arm": {
809
+ "absolute": true,
810
+ "rotation_type": null,
811
+ "shape": [
812
+ 7
813
+ ],
814
+ "continuous": true
815
+ },
816
+ "right_hand": {
817
+ "absolute": true,
818
+ "rotation_type": null,
819
+ "shape": [
820
+ 6
821
+ ],
822
+ "continuous": true
823
+ },
824
+ "right_leg": {
825
+ "absolute": true,
826
+ "rotation_type": null,
827
+ "shape": [
828
+ 6
829
+ ],
830
+ "continuous": true
831
+ },
832
+ "waist": {
833
+ "absolute": true,
834
+ "rotation_type": null,
835
+ "shape": [
836
+ 3
837
+ ],
838
+ "continuous": true
839
+ }
840
+ },
841
+ "action": {
842
+ "left_arm": {
843
+ "absolute": true,
844
+ "rotation_type": null,
845
+ "shape": [
846
+ 7
847
+ ],
848
+ "continuous": true
849
+ },
850
+ "left_hand": {
851
+ "absolute": true,
852
+ "rotation_type": null,
853
+ "shape": [
854
+ 6
855
+ ],
856
+ "continuous": true
857
+ },
858
+ "left_leg": {
859
+ "absolute": true,
860
+ "rotation_type": null,
861
+ "shape": [
862
+ 6
863
+ ],
864
+ "continuous": true
865
+ },
866
+ "neck": {
867
+ "absolute": true,
868
+ "rotation_type": null,
869
+ "shape": [
870
+ 3
871
+ ],
872
+ "continuous": true
873
+ },
874
+ "right_arm": {
875
+ "absolute": true,
876
+ "rotation_type": null,
877
+ "shape": [
878
+ 7
879
+ ],
880
+ "continuous": true
881
+ },
882
+ "right_hand": {
883
+ "absolute": true,
884
+ "rotation_type": null,
885
+ "shape": [
886
+ 6
887
+ ],
888
+ "continuous": true
889
+ },
890
+ "right_leg": {
891
+ "absolute": true,
892
+ "rotation_type": null,
893
+ "shape": [
894
+ 6
895
+ ],
896
+ "continuous": true
897
+ },
898
+ "waist": {
899
+ "absolute": true,
900
+ "rotation_type": null,
901
+ "shape": [
902
+ 3
903
+ ],
904
+ "continuous": true
905
+ }
906
+ },
907
+ "annotation": {
908
+ "human": [
909
+ "action.verb",
910
+ "action.object",
911
+ "action.start_location",
912
+ "action.end_location",
913
+ "action.hand",
914
+ "action.rating",
915
+ "action.failure_code",
916
+ "action.remarks",
917
+ "coarse_action",
918
+ "fine_action",
919
+ "validity"
920
+ ]
921
+ }
922
+ },
923
+ "embodiment": {
924
+ "robot_name": "gr00t004, gr00t001, gr00t003, gr00t005, gr00t006, gr00t007",
925
+ "robot_type": "GR1T2, GR1T1, GR1T2, GR1T2, GR1T2, GR1T2",
926
+ "record_frequency": 20.0,
927
+ "body_controller_frequency": 120.0,
928
+ "hand_controller_frequency": 40.0,
929
+ "embodiment_tag": "gr1_unified"
930
+ },
931
+ "processing": null,
932
+ "version": null
933
+ }
934
+ }
global_step60000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6498a18f5a01c89992c29d24d03e7aa72fe5354193604ee91ae3e5fa54fed53
3
+ size 918308912
global_step60000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f6c2692203262082568739dbfe1eb921f1e8430f8fdc57a2d6685e249016fdd
3
+ size 918308592
global_step60000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b571564bc648751daa672016900ee8c4f5bbf5960fded0a4c38cd389140c8735
3
+ size 918308976
global_step60000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b83dbbdcd9eca607e147f0c9fc6ea248693b95e5e441f23a84226649c2272b4
3
+ size 918308592
global_step60000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c6b1b4a4d5176bf748dc25c3b8a4329c61415b49685736e8b1c7b630f26e980
3
+ size 918308144
global_step60000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fda8acc1148643c7df260a2360ebe9f357266ba421558d6defef379ead74eb1
3
+ size 918307184
global_step60000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:343eccd3a900e86095d99b3251ce7ba72737aca749e64275f0a37786652d47a2
3
+ size 918303664
global_step60000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44e6313aca11f286d65a5ff8a8beb3405aa12528830907c52057e3321c73c8a
3
+ size 918304048
global_step60000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5275e187ae20f381d3f6a18cbaf518cfd2eda8c3ef1d3a6da873d970087a8e33
3
+ size 1325387042
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step60000
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575aba6acf8b14462410688cddd9e4f023f096d0c97a768b1ec16368aa92f298
3
+ size 1274863076
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eafc2a4bb1f9d7dba9475ca28e61e1105bd48e4459b071d3ed0d1b76aa1c261a
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:821ac307cd326308bdbf3bf8c0b0e3fd1f12261d3d391b719e82107f7e0e3f77
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9906bf1ffc05c9593c09f68867cd9688c751a91b4ea3b87ec32ccc6ec5e45c6c
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d570d2f204a2b93b4562bbe0bb40b0dbaad7ef740ac66c70d32bfdf4b0b589b
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6955b3cceacd7bb106d6567a2744ea608765afc4b447e9b8a2fb08fd33a18b0c
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df6c0417c7e490e0a662efd9d65c50a17fce6d4bab92da3f2bfc83d156d4b82c
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13191fd984b806d00370ac2e2290a08d7d0acd6e7efd224395a06260642dc9e0
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7865bc20171325a58c9418fbdce6222a60c3af36414cc9383cde59312fa2c3f9
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb677b69d5815e7e1f5f341ea75c4bd0f7789a7a85a36e672ade3f744edffa5f
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01ed6037a3d44bff78f5206941cb323b77a67cb7d2a69395c61abb9b801275e0
3
+ size 14954652
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)